File size: 33,521 Bytes
a93afca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'

import datetime
import io
import os
import math
import time
import json
import argparse
import numpy as np
from pathlib import Path
from collections import defaultdict, deque
from timm.utils import get_state_dict

import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch._six import inf
from torchmetrics import Metric
from tensorboardX import SummaryWriter


def bool_flag(s):
    """
    Parse boolean arguments from the command line.
    """
    FALSY_STRINGS = {"off", "false", "0"}
    TRUTHY_STRINGS = {"on", "true", "1"}
    if s.lower() in FALSY_STRINGS:
        return False
    elif s.lower() in TRUTHY_STRINGS:
        return True
    else:
        raise argparse.ArgumentTypeError("invalid value for a boolean flag")


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {}".format(name, str(meter))
            )
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
        log_msg = [
            header,
            '[{0' + space_fmt + '}/{1}]',
            'eta: {eta}',
            '{meters}',
            'time: {time}',
            'data: {data}'
        ]
        if torch.cuda.is_available():
            log_msg.append('max mem: {memory:.0f}')
        log_msg = self.delimiter.join(log_msg)
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print('{} Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))


class TensorboardLogger(object):
    def __init__(self, log_dir):
        self.writer = SummaryWriter(logdir=log_dir)
        self.step = 0

    def set_step(self, step=None):
        if step is not None:
            self.step = step
        else:
            self.step += 1

    def update(self, head='scalar', step=None, **kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step)

    def flush(self):
        self.writer.flush()


def _load_checkpoint_for_ema(model_ema, checkpoint):
    """
    Workaround for ModelEma._load_checkpoint to accept an already-loaded object
    """
    mem_file = io.BytesIO()
    torch.save(checkpoint, mem_file)
    mem_file.seek(0)
    model_ema._load_checkpoint(mem_file)


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def _get_rank_env():
    if "RANK" in os.environ:
        return int(os.environ["RANK"])
    else:
        return int(os.environ['OMPI_COMM_WORLD_RANK'])


def _get_local_rank_env():
    if "LOCAL_RANK" in os.environ:
        return int(os.environ["LOCAL_RANK"])
    else:
        return int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])


def _get_world_size_env():
    if "WORLD_SIZE" in os.environ:
        return int(os.environ["WORLD_SIZE"])
    else:
        return int(os.environ['OMPI_COMM_WORLD_SIZE'])


# The implementation code is modified from DeiT (https://github.com/facebookresearch/deit.git)
def init_distributed_mode(args):
    if args.dist_on_itp:
        args.rank = _get_rank_env()
        args.world_size = _get_world_size_env()  # int(os.environ['OMPI_COMM_WORLD_SIZE'])
        args.gpu = _get_local_rank_env()
        args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
        os.environ['LOCAL_RANK'] = str(args.gpu)
        os.environ['RANK'] = str(args.rank)
        os.environ['WORLD_SIZE'] = str(args.world_size)
        # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
    elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ['WORLD_SIZE'])
        args.gpu = int(os.environ['LOCAL_RANK'])
    elif 'SLURM_PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.rank % torch.cuda.device_count()
    else:
        print('Not using distributed mode')
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = 'nccl'
    print('| distributed init (rank {}): {}, gpu {}'.format(
        args.rank, args.dist_url, args.gpu), flush=True)
    torch.distributed.init_process_group(
        backend=args.dist_backend, init_method=args.dist_url,
        world_size=args.world_size, rank=args.rank,
        timeout=datetime.timedelta(0, 7200)
    )
    torch.distributed.barrier()
    setup_for_distributed(args.rank == 0)


def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
    missing_keys = []
    unexpected_keys = []
    error_msgs = []
    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, '_metadata', None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    def load(module, prefix=''):
        local_metadata = {} if metadata is None else metadata.get(
            prefix[:-1], {})
        module._load_from_state_dict(
            state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + '.')

    load(model, prefix=prefix)

    warn_missing_keys = []
    ignore_missing_keys = []
    for key in missing_keys:
        keep_flag = True
        for ignore_key in ignore_missing.split('|'):
            if ignore_key in key:
                keep_flag = False
                break
        if keep_flag:
            warn_missing_keys.append(key)
        else:
            ignore_missing_keys.append(key)

    missing_keys = warn_missing_keys

    if len(missing_keys) > 0:
        print("Weights of {} not initialized from pretrained model: {}".format(
            model.__class__.__name__, missing_keys))
    if len(unexpected_keys) > 0:
        print("Weights from pretrained model not used in {}: {}".format(
            model.__class__.__name__, unexpected_keys))
    if len(ignore_missing_keys) > 0:
        print("Ignored weights of {} not initialized from pretrained model: {}".format(
            model.__class__.__name__, ignore_missing_keys))
    if len(error_msgs) > 0:
        print('\n'.join(error_msgs))


class NativeScalerWithGradNormCount:
    state_dict_key = "amp_scaler"

    def __init__(self):
        self._scaler = torch.cuda.amp.GradScaler()

    def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
        self._scaler.scale(loss).backward(create_graph=create_graph)
        if update_grad:
            if clip_grad is not None:
                assert parameters is not None
                self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
                norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
            else:
                self._scaler.unscale_(optimizer)
                norm = get_grad_norm_(parameters)
            self._scaler.step(optimizer)
            self._scaler.update()
        else:
            norm = None
        return norm

    def state_dict(self):
        return self._scaler.state_dict()

    def load_state_dict(self, state_dict):
        self._scaler.load_state_dict(state_dict)


def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = [p for p in parameters if p.grad is not None]
    norm_type = float(norm_type)
    if len(parameters) == 0:
        return torch.tensor(0.)
    device = parameters[0].grad.device
    if norm_type == inf:
        total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
    else:
        total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
    return total_norm


def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
                     start_warmup_value=0, warmup_steps=-1, sched_type="cos"):
    warmup_schedule = np.array([])
    warmup_iters = warmup_epochs * niter_per_ep
    if warmup_steps > 0:
        warmup_iters = warmup_steps
    print("Set warmup steps = %d" % warmup_iters)
    if warmup_epochs > 0:
        warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)

    if sched_type == "cos":
        iters = np.arange(epochs * niter_per_ep - warmup_iters)
        schedule = np.array([
            final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])
    elif sched_type == "linear":
        schedule = np.linspace(base_value, final_value, epochs * niter_per_ep - warmup_iters)
    else:
        raise NotImplementedError()

    schedule = np.concatenate((warmup_schedule, schedule))

    assert len(schedule) == epochs * niter_per_ep
    return schedule


def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
    output_dir = Path(args.output_dir)
    if loss_scaler is not None:
        checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch)]
        for checkpoint_path in checkpoint_paths:
            to_save = {
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'epoch': epoch,
                'scaler': loss_scaler.state_dict(),
                'args': args,
            }

            if model_ema is not None:
                to_save['model_ema'] = get_state_dict(model_ema)

            save_on_master(to_save, checkpoint_path)
    else:
        client_state = {'epoch': epoch, "args": args}
        if model_ema is not None:
            client_state['model_ema'] = get_state_dict(model_ema)
        model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch, client_state=client_state)


def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
    output_dir = Path(args.output_dir)
    if loss_scaler is not None:
        # torch.amp
        if args.auto_resume and len(args.resume) == 0:
            import glob
            all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
            latest_ckpt = -1
            for ckpt in all_checkpoints:
                t = ckpt.split('-')[-1].split('.')[0]
                if t.isdigit():
                    latest_ckpt = max(int(t), latest_ckpt)
            if latest_ckpt >= 0:
                args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
            print("Auto resume checkpoint: %s" % args.resume)

        if args.resume:
            if args.resume.startswith('https'):
                checkpoint = torch.hub.load_state_dict_from_url(
                    args.resume, map_location='cpu', check_hash=True)
            else:
                checkpoint = torch.load(args.resume, map_location='cpu')
            model_without_ddp.load_state_dict(checkpoint['model'])
            print("Resume checkpoint %s" % args.resume)
            if 'optimizer' in checkpoint and 'epoch' in checkpoint:
                optimizer.load_state_dict(checkpoint['optimizer'])
                args.start_epoch = checkpoint['epoch'] + 1
                if hasattr(args, 'model_ema') and args.model_ema:
                    _load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
                if 'scaler' in checkpoint:
                    loss_scaler.load_state_dict(checkpoint['scaler'])
                print("With optim & sched!")
    else:
        # deepspeed, only support '--auto_resume'.
        if args.auto_resume:
            import glob
            all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*'))
            latest_ckpt = -1
            for ckpt in all_checkpoints:
                t = ckpt.split('-')[-1].split('.')[0]
                if t.isdigit():
                    latest_ckpt = max(int(t), latest_ckpt)
            if latest_ckpt >= 0:
                args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt)
                print("Auto resume checkpoint: %d" % latest_ckpt)
                _, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt)
                args.start_epoch = client_states['epoch'] + 1
                if model_ema is not None:
                    if args.model_ema:
                        _load_checkpoint_for_ema(model_ema, client_states['model_ema'])


# The implementation code is modified from DeiT (https://github.com/facebookresearch/deit.git)
def load_model_and_may_interpolate(ckpt_path, model, model_key, model_prefix):
    if ckpt_path.startswith('https'):
        checkpoint = torch.hub.load_state_dict_from_url(
            ckpt_path, map_location='cpu', check_hash=True)
    else:
        checkpoint = torch.load(ckpt_path, map_location='cpu')

    print("Load ckpt from %s" % ckpt_path)
    checkpoint_model = None
    for model_key in model_key.split('|'):
        if model_key in checkpoint:
            checkpoint_model = checkpoint[model_key]
            print("Load state_dict by model_key = %s" % model_key)
            break
    
    if checkpoint_model is None:
        checkpoint_model = checkpoint
    
    state_dict = model.state_dict()
    for k in ['head.weight', 'head.bias']:
        if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
            print(f"Removing key {k} from pretrained checkpoint")
            del checkpoint_model[k]

    # interpolate position embedding
    for pos_embed_key in ("vision_pos_embed", "pos_embed", "beit3.encoder.embed_positions.A.weight"):
        if pos_embed_key in checkpoint_model:
            pos_embed_checkpoint = checkpoint_model[pos_embed_key]
            embedding_size = pos_embed_checkpoint.shape[-1]
            if pos_embed_key == "beit3.encoder.embed_positions.A.weight":
                # being consistent with Fairseq, which starts from 2 for position embedding
                torchscale_model = True
                num_patches = model.beit3.vision_embed.num_patches
                num_extra_tokens = model.beit3.vision_embed.num_position_embeddings() + 2 - num_patches
            else:
                torchscale_model = False
                num_patches = model.patch_embed.num_patches
                num_extra_tokens = getattr(model, pos_embed_key).shape[-2] - num_patches
            # height (== width) for the checkpoint position embedding
            orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
            # height (== width) for the new position embedding
            new_size = int(num_patches ** 0.5)
            # class_token and dist_token are kept unchanged
            if orig_size != new_size:
                print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
                if torchscale_model:
                    extra_tokens = pos_embed_checkpoint[:num_extra_tokens].unsqueeze(0)
                    # only the position tokens are interpolated
                    pos_tokens = pos_embed_checkpoint[num_extra_tokens:]
                else:
                    extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
                    # only the position tokens are interpolated
                    pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
                pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
                pos_tokens = torch.nn.functional.interpolate(
                    pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
                pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
                new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
                if torchscale_model:
                    new_pos_embed = new_pos_embed.squeeze(0)
                checkpoint_model[pos_embed_key] = new_pos_embed

    load_state_dict(model, checkpoint_model, prefix=model_prefix)


def create_ds_config(args):
    args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
    with open(args.deepspeed_config, mode="w") as writer:
        ds_config = {
            "train_batch_size": args.batch_size * args.update_freq * get_world_size(),
            "train_micro_batch_size_per_gpu": args.batch_size,
            "steps_per_print": 1000,
            "optimizer": {
                "type": "Adam",
                "adam_w_mode": True,
                "params": {
                    "lr": args.lr,
                    "weight_decay": args.weight_decay,
                    "bias_correction": True,
                    "betas": [
                        args.opt_betas[0],
                        args.opt_betas[1]
                    ],
                    "eps": args.opt_eps
                }
            },
            "fp16": {
                "enabled": True,
                "loss_scale": 0,
                "initial_scale_power": getattr(args, "initial_scale_power", 12),
                "loss_scale_window": 1000,
                "hysteresis": 2,
                "min_loss_scale": 1
            },
            "amp": {
                "enabled": False,
                "opt_level": "O2"
            }
        }

        if args.clip_grad is not None:
            ds_config.update({'gradient_clipping': args.clip_grad})

        if args.zero_stage == 1:
            ds_config.update({"zero_optimization": {"stage": args.zero_stage, "reduce_bucket_size": 5e8}})
        elif args.zero_stage > 1:
            raise NotImplementedError()

        writer.write(json.dumps(ds_config, indent=2))


def merge_batch_tensors_by_dict_key(batch):
    batch_tensors = {}
    for tensor_key in batch[0]:
        if isinstance(batch[0][tensor_key], torch.Tensor):
            batch_tensors[tensor_key] = torch.stack([d[tensor_key] for d in batch])
        else:
            batch_tensors[tensor_key] = torch.tensor([d[tensor_key] for d in batch], dtype=torch.long)
    return batch_tensors


def get_loss_scale_for_deepspeed(model):
    optimizer = model.optimizer
    loss_scale = None
    if hasattr(optimizer, 'loss_scale'):
        loss_scale = optimizer.loss_scale
    elif hasattr(optimizer, 'cur_scale'):
        loss_scale = optimizer.cur_scale
    return loss_scale


class GatherLayer(torch.autograd.Function):
    """
    Gather tensors from all workers with support for backward propagation:
    This implementation does not cut the gradients as torch.distributed.all_gather does.
    """
    @staticmethod
    def forward(ctx, x):
        output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
        dist.all_gather(output, x)
        return tuple(output)
    @staticmethod
    def backward(ctx, *grads):
        all_gradients = torch.stack(grads)
        dist.all_reduce(all_gradients)
        return all_gradients[dist.get_rank()]


def gather_features(
        image_features,
        text_features,
):
    gathered_image_features = GatherLayer.apply(image_features)
    gathered_text_features = GatherLayer.apply(text_features)
    all_image_features = torch.cat(gathered_image_features)
    all_text_features = torch.cat(gathered_text_features)

    return all_image_features, all_text_features


# The implementation code is modified from open_clip (https://github.com/mlfoundations/open_clip.git)
class ClipLoss(nn.Module):

    def __init__(
            self,
            cache_labels=False,
            rank=0,
            world_size=1,
    ):
        super().__init__()
        self.cache_labels = cache_labels
        self.rank = rank
        self.world_size = world_size

        # cache state
        self.prev_num_logits = 0
        self.labels = {}

    def forward(self, image_features, text_features, logit_scale):
        device = image_features.device
        if self.world_size > 1:
            all_image_features, all_text_features = gather_features(
                image_features, text_features
            )

            logits_per_image = logit_scale * image_features @ all_text_features.T
            logits_per_text = logit_scale * text_features @ all_image_features.T
        else:
            logits_per_image = logit_scale * image_features @ text_features.T
            logits_per_text = logit_scale * text_features @ image_features.T

        # calculated ground-truth and cache if enabled
        num_logits = logits_per_image.shape[0]
        if self.prev_num_logits != num_logits or device not in self.labels:
            labels = torch.arange(num_logits, device=device, dtype=torch.long)
            if self.world_size > 1:
                labels = labels + num_logits * self.rank
            if self.cache_labels:
                self.labels[device] = labels
                self.prev_num_logits = num_logits
        else:
            labels = self.labels[device]

        total_loss = (
            F.cross_entropy(logits_per_image, labels) +
            F.cross_entropy(logits_per_text, labels)
            ) / 2
        return total_loss, logits_per_image, logits_per_text


def write_result_to_jsonl(test_stats, result_file):
    with open(result_file, mode="w", encoding="utf-8") as writer:
        writer.write(json.dumps(test_stats, indent=None))


def read_result_from_jsonl(result_file):
    with open(result_file, mode="r", encoding="utf-8") as reader:
        return json.load(reader)


# The implementation code is from ViLT (https://github.com/dandelin/ViLT.git)
class VQAScore(Metric):
    def __init__(self, dist_sync_on_step=False):
        super().__init__(dist_sync_on_step=dist_sync_on_step)
        self.add_state("score", default=torch.tensor(0.0), dist_reduce_fx="sum")
        self.add_state("total", default=torch.tensor(0.0), dist_reduce_fx="sum")

    def update(self, logits, target):
        logits, target = (
            logits.detach().float().to(self.score.device),
            target.detach().float().to(self.score.device),
        )
        logits = torch.max(logits, 1)[1]
        one_hots = torch.zeros(*target.size()).to(target)
        one_hots.scatter_(1, logits.view(-1, 1), 1)
        scores = one_hots * target

        self.score += scores.sum()
        self.total += len(logits)

    def compute(self):
        return self.score / self.total


class BertCaptioningLoss(nn.Module):
    def __init__(self, label_smoothing, drop_worst_ratio, drop_worst_after):
        super().__init__()
        self.label_smoothing = label_smoothing
        self.drop_worst_ratio = drop_worst_ratio
        self.drop_worst_after = drop_worst_after
        self.log_soft = nn.LogSoftmax(dim=1)
        self.kl = nn.KLDivLoss(reduction='none')
        self.iter = 0

    def forward(self, logits, target, iter):
        eps = self.label_smoothing
        n_class = logits.size(1)
        one_hot = torch.zeros_like(logits).scatter(1, target.view(-1, 1), 1)
        one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
        log_prb = self.log_soft(logits)
        loss = self.kl(log_prb, one_hot).sum(1)

        if self.drop_worst_ratio > 0 and iter > self.drop_worst_after:
            loss, _ = torch.topk(loss,
                    k=int(loss.shape[0] * (1-self.drop_worst_ratio)),
                    largest=False)
        loss = loss.mean()

        return loss


class BeamHypotheses(object):
    def __init__(self, n_hyp, max_length, length_penalty, early_stopping):
        """
        Initialize n-best list of hypotheses.
        """
        self.max_length = max_length - 1  # ignoring bos_token
        self.length_penalty = length_penalty
        self.early_stopping = early_stopping
        self.n_hyp = n_hyp
        self.hyp = []
        self.worst_score = 1e9

    def __len__(self):
        """
        Number of hypotheses in the list.
        """
        return len(self.hyp)

    def add(self, hyp, sum_logprobs):
        """
        Add a new hypothesis to the list.
        """
        score = sum_logprobs / len(hyp) ** self.length_penalty
        if len(self) < self.n_hyp or score > self.worst_score:
            self.hyp.append((score, hyp))
            if len(self) > self.n_hyp:
                sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)])
                del self.hyp[sorted_scores[0][1]]
                self.worst_score = sorted_scores[1][0]
            else:
                self.worst_score = min(score, self.worst_score)

    def is_done(self, best_sum_logprobs):
        """
        If there are enough hypotheses and that none of the hypotheses being generated
        can become better than the worst one in the heap, then we are done with this sentence.
        """
        if len(self) < self.n_hyp:
            return False
        elif self.early_stopping:
            return True
        else:
            return self.worst_score >= best_sum_logprobs / self.max_length ** self.length_penalty


def dump_predictions(args, result, file_suffix):
    global_rank = get_rank()
    jsons = None
    if global_rank >= 0:
        output_file = os.path.join(args.task_cache_path, f"submit_{global_rank}_{file_suffix}.json")
        with open(output_file, "w") as fp:
            json.dump(result, fp, indent=2)
        torch.distributed.barrier()

        if global_rank == 0:
            world_size = get_world_size()
            jsons = []
            for i in range(world_size):
                each_file = os.path.join(args.task_cache_path, f"submit_{i}_{file_suffix}.json")
                with open(each_file, "r") as fp:
                    jsons += json.load(fp)
            
            new_jsons = []
            res_dict = dict()
            if args.task in ["coco_captioning", "nocaps"]:
                qid_key = "image_id"
            else:
                # for VQAv2
                qid_key = "question_id"
            for item in jsons:
                if item[qid_key] in res_dict:
                    continue
                new_jsons.append(item)
                res_dict[item[qid_key]] = item
            jsons = new_jsons

        torch.distributed.barrier()
        os.remove(output_file)
    else:
        jsons = result
    
    result_file = os.path.join(args.output_dir, f"submit_{file_suffix}.json")
    if jsons is not None:
        with open(result_file, "w") as fp:
            json.dump(jsons, fp, indent=2)
        print("Infer %d examples into %s" % (len(jsons), result_file))
    return result_file


# The evaluation code is from BLIP (https://github.com/salesforce/BLIP)
# For nocaps, please submit the prediction file to the evaluate server (https://eval.ai/web/challenges/challenge-page/355/overview) to obtain the final results
def coco_caption_eval(gt_dir, results_file, split):
    from pycocotools.coco import COCO
    from pycocoevalcap.eval import COCOEvalCap
    from torchvision.datasets.utils import download_url

    urls = {'coco_captioning_val': 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json',
            'coco_captioning_test': 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json',
            'nocaps_val': 'https://github.com/addf400/files/releases/download/beit3/nocaps_val_gt.json'}
    filenames = {'coco_captioning_val':'coco_karpathy_val_gt.json',
                 'coco_captioning_test':'coco_karpathy_test_gt.json',
                 'nocaps_val':'nocaps_val_gt.json'}
    
    download_url(urls[split], gt_dir)
    annotation_file = os.path.join(gt_dir, filenames[split])
    
    # create coco object and coco_result object
    coco = COCO(annotation_file)
    coco_result = coco.loadRes(results_file)

    # create coco_eval object by taking coco and coco_result
    coco_eval = COCOEvalCap(coco, coco_result)

    # evaluate results
    # SPICE will take a few minutes the first time, but speeds up due to caching
    coco_eval.evaluate()
    
    res_dict = dict()
    for metric, score in coco_eval.eval.items():
        res_dict[metric] = score
    
    return res_dict