File size: 4,074 Bytes
a93afca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from enum import Enum

import numpy as np
import torch
import torch.distributed as dist

IGNORE_INDEX = -100

class Summary(Enum):
    NONE = 0
    AVERAGE = 1
    SUM = 2
    COUNT = 3


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self, name, fmt=":f", summary_type=Summary.AVERAGE):
        self.name = name
        self.fmt = fmt
        self.summary_type = summary_type
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def all_reduce(self):
        device = "cuda" if torch.cuda.is_available() else "cpu"
        if isinstance(self.sum, np.ndarray):
            total = torch.tensor(
                self.sum.tolist()
                + [
                    self.count,
                ],
                dtype=torch.float32,
                device=device,
            )
        else:
            total = torch.tensor(
                [self.sum, self.count], dtype=torch.float32, device=device
            )

        dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
        if total.shape[0] > 2:
            self.sum, self.count = total[:-1].cpu().numpy(), total[-1].cpu().item()
        else:
            self.sum, self.count = total.tolist()
        self.avg = self.sum / (self.count + 1e-5)

    def __str__(self):
        fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
        return fmtstr.format(**self.__dict__)

    def summary(self):
        fmtstr = ""
        if self.summary_type is Summary.NONE:
            fmtstr = ""
        elif self.summary_type is Summary.AVERAGE:
            fmtstr = "{name} {avg:.3f}"
        elif self.summary_type is Summary.SUM:
            fmtstr = "{name} {sum:.3f}"
        elif self.summary_type is Summary.COUNT:
            fmtstr = "{name} {count:.3f}"
        else:
            raise ValueError("invalid summary type %r" % self.summary_type)

        return fmtstr.format(**self.__dict__)


def intersectionAndUnionGPU(output, target, K, ignore_index=255):
    # 'K' classes, output and target sizes are N or N * L or N * H * W, each value in range 0 to K - 1.
    assert output.dim() in [1, 2, 3]
    assert output.shape == target.shape
    output = output.view(-1)
    target = target.view(-1)
    output[target == ignore_index] = ignore_index
    intersection = output[output == target]
    area_intersection = torch.histc(intersection, bins=K, min=0, max=K - 1)
    area_output = torch.histc(output, bins=K, min=0, max=K - 1)
    area_target = torch.histc(target, bins=K, min=0, max=K - 1)
    area_union = area_output + area_target - area_intersection
    return area_intersection, area_union, area_target


class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print("\t".join(entries))

    def display_summary(self):
        entries = [" *"]
        entries += [meter.summary() for meter in self.meters]
        print(" ".join(entries))

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = "{:" + str(num_digits) + "d}"
        return "[" + fmt + "/" + fmt.format(num_batches) + "]"


def dict_to_cuda(input_dict):
    for k, v in input_dict.items():
        if isinstance(input_dict[k], torch.Tensor):
            input_dict[k] = v.cuda(non_blocking=True)
        elif (
            isinstance(input_dict[k], list)
            and len(input_dict[k]) > 0
            and isinstance(input_dict[k][0], torch.Tensor)
        ):
            input_dict[k] = [ele.cuda(non_blocking=True) for ele in v]
    return input_dict