Spaces:
Runtime error
Runtime error
File size: 13,299 Bytes
a93afca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import glob
import os
import random
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from pycocotools import mask
from model.segment_anything.utils.transforms import ResizeLongestSide
from .data_processing import get_mask_from_json
from .refer import REFER
from .refer_seg_dataset import ReferSegDataset
from .sem_seg_dataset import SemSegDataset
from torchvision import transforms
import json
from PIL import Image
def collate_fn(
batch, tokenizer=None, local_rank=-1
):
image_path_list = []
images_list = []
images_evf_list = []
masks_list = []
label_list = []
resize_list = []
sampled_classes_list = []
offset_list = [0]
cnt = 0
inferences = []
for (
image_path,
images,
images_evf,
masks,
label,
resize,
sampled_classes,
inference,
) in batch:
image_path_list.append(image_path)
images_list.append(images)
images_evf_list.append(images_evf)
label_list.append(label)
masks_list.append(masks.float())
resize_list.append(resize)
sampled_classes_list.extend(sampled_classes)
cnt += len(sampled_classes)
offset_list.append(cnt)
inferences.append(inference)
input_ids = [
tokenizer(prompt, return_tensors="pt").input_ids[0]
for prompt in sampled_classes_list
]
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=tokenizer.pad_token_id
)
attention_masks = input_ids.ne(tokenizer.pad_token_id)
if inferences[0] == False:
truncate_len = tokenizer.model_max_length
if input_ids.shape[1] > truncate_len:
input_ids = input_ids[:, :truncate_len]
targets = targets[:, :truncate_len]
attention_masks = attention_masks[:, :truncate_len]
return {
"image_paths": image_path_list,
"images": torch.stack(images_list, dim=0),
"images_evf": torch.stack(images_evf_list, dim=0),
"input_ids": input_ids,
"attention_masks": attention_masks,
"masks_list": masks_list,
"label_list": label_list,
"resize_list": resize_list,
"offset": torch.LongTensor(offset_list),
"sampled_classes_list": sampled_classes_list,
"inference": inferences[0],
}
class HybridDataset(torch.utils.data.Dataset):
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
img_size = 1024
ignore_label = 255
def __init__(
self,
base_image_dir,
tokenizer,
samples_per_epoch=500 * 8 * 2 * 10,
precision: str = "fp32",
image_size: int = 224,
num_classes_per_sample: int = 3,
exclude_val=False,
dataset="sem_seg||refer_seg",
sample_rate=[9, 3, 3, 1],
sem_seg_data="ade20k||cocostuff||pascal_part||mapillary",
refer_seg_data="refclef||refcoco||refcoco+||refcocog",
explanatory=-1,
model_type="ori",
transform=ResizeLongestSide(1024),
):
self.transform=transform
self.model_type = model_type
self.exclude_val = exclude_val
self.dataset = dataset
self.samples_per_epoch = samples_per_epoch
self.explanatory = explanatory
self.num_classes_per_sample = num_classes_per_sample
sample_rate = np.array(sample_rate)
self.sample_rate = sample_rate / sample_rate.sum()
self.base_image_dir = base_image_dir
self.image_size = image_size
self.tokenizer = tokenizer
self.precision = precision
self.datasets = dataset.split("||")
self.all_datasets = []
for dataset in self.datasets:
if dataset == "sem_seg":
self.all_datasets.append(
SemSegDataset(
base_image_dir,
tokenizer,
samples_per_epoch,
precision,
image_size,
num_classes_per_sample,
exclude_val,
sem_seg_data,
self.model_type,
self.transform
)
)
elif dataset == "refer_seg":
self.all_datasets.append(
ReferSegDataset(
base_image_dir,
tokenizer,
samples_per_epoch,
precision,
image_size,
num_classes_per_sample,
exclude_val,
refer_seg_data,
self.model_type,
self.transform
)
)
def __len__(self):
return self.samples_per_epoch
def __getitem__(self, idx):
ind = np.random.choice(list(range(len(self.datasets))), p=self.sample_rate)
data = self.all_datasets[ind]
inference = False
return *data[0], inference
def init_ade20k(base_image_dir):
with open("utils/ade20k_classes.json", "r") as f:
ade20k_classes = json.load(f)
ade20k_classes = np.array(ade20k_classes)
image_ids = sorted(
os.listdir(os.path.join(base_image_dir, "ade20k/images", "validation"))
)
ade20k_image_ids = []
for x in image_ids:
if x.endswith(".jpg"):
ade20k_image_ids.append(x[:-4])
ade20k_images = []
for image_id in ade20k_image_ids: # self.descriptions:
ade20k_images.append(
os.path.join(
base_image_dir,
"ade20k",
"images",
"validation",
"{}.jpg".format(image_id),
)
)
ade20k_labels = [
x.replace(".jpg", ".png").replace("images", "annotations")
for x in ade20k_images
]
print("ade20k: ", len(ade20k_images))
return ade20k_classes, ade20k_images, ade20k_labels
class ValDataset(torch.utils.data.Dataset):
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
img_size = 1024
ignore_label = 255
def __init__(
self,
base_image_dir,
tokenizer,
val_dataset,
image_size=224,
model_type="ori"
):
self.model_type = model_type
self.base_image_dir = base_image_dir
splits = val_dataset.split("|")
if len(splits) == 3:
ds, splitBy, split = splits
base_image_dir = os.path.join(base_image_dir, "refer_seg")
refer_api = REFER(base_image_dir, ds, splitBy)
ref_ids_val = refer_api.getRefIds(split=split)
images_ids_val = refer_api.getImgIds(ref_ids=ref_ids_val)
refs_val = refer_api.loadRefs(ref_ids=ref_ids_val)
refer_seg_ds = {}
refer_seg_ds["images"] = []
loaded_images = refer_api.loadImgs(image_ids=images_ids_val)
for item in loaded_images:
item = item.copy()
if ds == "refclef":
item["file_name"] = os.path.join(
base_image_dir, "images/saiapr_tc-12", item["file_name"]
)
elif ds in ["refcoco", "refcoco+", "refcocog", "grefcoco"]:
item["file_name"] = os.path.join(
base_image_dir,
"images/mscoco/images/train2014",
item["file_name"],
)
refer_seg_ds["images"].append(item)
refer_seg_ds["annotations"] = refer_api.Anns # anns_val
img2refs = {}
for ref in refs_val:
image_id = ref["image_id"]
img2refs[image_id] = img2refs.get(image_id, []) + [
ref,
]
refer_seg_ds["img2refs"] = img2refs
self.refer_seg_ds = refer_seg_ds
self.data_type = "refer_seg"
elif val_dataset=="ade":
ds = "ade"
self.classes, self.images, self.labels = init_ade20k(base_image_dir)
self.data_type = "sem_seg"
self.ds = ds
self.tokenizer = tokenizer
self.transform = ResizeLongestSide(1024)
self.image_preprocessor = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((image_size, image_size), interpolation=3),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
def __len__(self):
if self.data_type == "refer_seg":
return len(self.refer_seg_ds["images"])
else:
return len(self.images)
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - self.pixel_mean) / self.pixel_std
if self.model_type=="effi":
x = F.interpolate(x.unsqueeze(0), (self.img_size, self.img_size), mode="bilinear").squeeze(0)
else:
# Pad
h, w = x.shape[-2:]
padh = self.img_size - h
padw = self.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def __getitem__(self, idx):
if self.data_type == "refer_seg":
refer_seg_ds = self.refer_seg_ds
images = refer_seg_ds["images"]
annotations = refer_seg_ds["annotations"]
img2refs = refer_seg_ds["img2refs"]
image_info = images[idx]
image_path = image_info["file_name"]
image_id = image_info["id"]
refs = img2refs[image_id]
if len(refs) == 0:
raise ValueError("image {} has no refs".format(image_id))
sents = []
ann_ids = []
for ref in refs:
for sent in ref["sentences"]:
sents.append(sent["sent"].strip().lower())
ann_ids.append(ref["ann_id"])
sampled_sents = sents
sampled_ann_ids = ann_ids
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
is_sentence = False
elif self.data_type == "sem_seg":
image_path = self.images[idx]
label_path = self.labels[idx]
label = Image.open(label_path)
label = np.array(label)
label[label == 0] = 255
label -= 1
label[label == 254] = 255
unique_label = np.unique(label).tolist()
if 255 in unique_label:
unique_label.remove(255)
sampled_sents = [self.classes[class_id] for class_id in unique_label]
img = cv2.imread(image_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
class_ids = unique_label
label = torch.from_numpy(label).long()
masks = []
for class_id in class_ids:
masks.append(label == class_id)
masks = torch.stack(masks, dim=0)
# preprocess image for evf
image_evf = self.image_preprocessor(image)
# preprocess image for sam
image = self.transform.apply_image(image)
resize = image.shape[:2]
image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
if self.data_type == "refer_seg":
masks = []
for i, ann_id in enumerate(sampled_ann_ids):
ann = annotations[ann_id]
if len(ann["segmentation"]) == 0 and sampled_sents[i] != "":
m = np.zeros((image_info["height"], image_info["width"], 1))
else:
if type(ann["segmentation"][0]) == list: # polygon
rle = mask.frPyObjects(
ann["segmentation"],
image_info["height"],
image_info["width"],
)
else:
rle = ann["segmentation"]
for i in range(len(rle)):
if not isinstance(rle[i]["counts"], bytes):
rle[i]["counts"] = rle[i]["counts"].encode()
m = mask.decode(rle)
m = np.sum(
m, axis=2
) # sometimes there are multiple binary map (corresponding to multiple segs)
m = m.astype(np.uint8) # convert to np.uint8
masks.append(m)
if not isinstance(masks, torch.Tensor):
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
labels = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label
inference = True
return (
image_path,
image,
image_evf,
masks,
labels,
resize,
sampled_sents,
inference,
)
|