kevinwang676's picture
Update app.py
3ad232b
raw
history blame
12.1 kB
import json
import os
import subprocess
from pathlib import Path
import gradio as gr
import librosa
import numpy as np
import torch
from demucs.apply import apply_model
from demucs.pretrained import DEFAULT_MODEL, get_model
from huggingface_hub import hf_hub_download, list_repo_files
from so_vits_svc_fork.hparams import HParams
from so_vits_svc_fork.inference.core import Svc
###################################################################
# REPLACE THESE VALUES TO CHANGE THE MODEL REPO/CKPT NAME/SETTINGS
###################################################################
# The Hugging Face Hub repo ID - 在这里修改repo_id,可替换成任何已经训练好的模型!
repo_id = "kevinwang676/guesswho"
# If None, Uses latest ckpt in the repo
ckpt_name = None
# If None, Uses "kmeans.pt" if it exists in the repo
cluster_model_name = None
# Set the default f0 type to use - use the one it was trained on.
# The default for so-vits-svc-fork is "dio".
# Options: "crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
default_f0_method = "crepe"
# The default ratio of cluster inference to SVC inference.
# If cluster_model_name is not found in the repo, this is set to 0.
default_cluster_infer_ratio = 0.5
# Limit on duration of audio at inference time. increase if you can
# In this parent app, we set the limit with an env var to 30 seconds
# If you didnt set env var + you go OOM try changing 9e9 to <=300ish
duration_limit = int(os.environ.get("MAX_DURATION_SECONDS", 9e9))
###################################################################
# Figure out the latest generator by taking highest value one.
# Ex. if the repo has: G_0.pth, G_100.pth, G_200.pth, we'd use G_200.pth
if ckpt_name is None:
latest_id = sorted(
[
int(Path(x).stem.split("_")[1])
for x in list_repo_files(repo_id)
if x.startswith("G_") and x.endswith(".pth")
]
)[-1]
ckpt_name = f"G_{latest_id}.pth"
cluster_model_name = cluster_model_name or "kmeans.pt"
if cluster_model_name in list_repo_files(repo_id):
print(f"Found Cluster model - Downloading {cluster_model_name} from {repo_id}")
cluster_model_path = hf_hub_download(repo_id, cluster_model_name)
else:
print(f"Could not find {cluster_model_name} in {repo_id}. Using None")
cluster_model_path = None
default_cluster_infer_ratio = default_cluster_infer_ratio if cluster_model_path else 0
generator_path = hf_hub_download(repo_id, ckpt_name)
config_path = hf_hub_download(repo_id, "config.json")
hparams = HParams(**json.loads(Path(config_path).read_text()))
speakers = list(hparams.spk.keys())
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=cluster_model_path)
demucs_model = get_model(DEFAULT_MODEL)
def extract_vocal_demucs(model, filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0):
wav, sr = librosa.load(filename, mono=False, sr=sr)
wav = torch.tensor(wav)
ref = wav.mean(0)
wav = (wav - ref.mean()) / ref.std()
sources = apply_model(
model, wav[None], device=device, shifts=shifts, split=split, overlap=overlap, progress=True, num_workers=jobs
)[0]
sources = sources * ref.std() + ref.mean()
# We take just the vocals stem. I know the vocals for this model are at index -1
# If using different model, check model.sources.index('vocals')
vocal_wav = sources[-1]
# I did this because its the same normalization the so-vits model required
vocal_wav = vocal_wav / max(1.01 * vocal_wav.abs().max(), 1)
vocal_wav = vocal_wav.numpy()
vocal_wav = librosa.to_mono(vocal_wav)
vocal_wav = vocal_wav.T
instrumental_wav = sources[:-1].sum(0).numpy().T
return vocal_wav, instrumental_wav
def download_youtube_clip(
video_identifier,
start_time,
end_time,
output_filename,
num_attempts=5,
url_base="https://www.youtube.com/watch?v=",
quiet=False,
force=False,
):
output_path = Path(output_filename)
if output_path.exists():
if not force:
return output_path
else:
output_path.unlink()
quiet = "--quiet --no-warnings" if quiet else ""
command = f"""
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501
""".strip()
attempts = 0
while True:
try:
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError:
attempts += 1
if attempts == num_attempts:
return None
else:
break
if output_path.exists():
return output_path
else:
return None
def predict(
speaker,
audio,
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: str = "crepe",
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
):
audio, _ = librosa.load(audio, sr=model.target_sample, duration=duration_limit)
audio = model.infer_silence(
audio.astype(np.float32),
speaker=speaker,
transpose=transpose,
auto_predict_f0=auto_predict_f0,
cluster_infer_ratio=cluster_infer_ratio,
noise_scale=noise_scale,
f0_method=f0_method,
db_thresh=db_thresh,
pad_seconds=pad_seconds,
chunk_seconds=chunk_seconds,
absolute_thresh=absolute_thresh,
)
return model.target_sample, audio
def predict_song_from_yt(
ytid_or_url,
start,
end,
speaker=speakers[0],
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: str = "dio",
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
):
end = min(start + duration_limit, end)
original_track_filepath = download_youtube_clip(
ytid_or_url,
start,
end,
"track.wav",
force=True,
url_base="" if ytid_or_url.startswith("http") else "https://www.youtube.com/watch?v=",
)
vox_wav, inst_wav = extract_vocal_demucs(demucs_model, original_track_filepath)
if transpose != 0:
inst_wav = librosa.effects.pitch_shift(inst_wav.T, sr=model.target_sample, n_steps=transpose).T
cloned_vox = model.infer_silence(
vox_wav.astype(np.float32),
speaker=speaker,
transpose=transpose,
auto_predict_f0=auto_predict_f0,
cluster_infer_ratio=cluster_infer_ratio,
noise_scale=noise_scale,
f0_method=f0_method,
db_thresh=db_thresh,
pad_seconds=pad_seconds,
chunk_seconds=chunk_seconds,
absolute_thresh=absolute_thresh,
)
full_song = inst_wav + np.expand_dims(cloned_vox, 1)
return (model.target_sample, full_song), (model.target_sample, cloned_vox)
SPACE_ID = "nateraw/voice-cloning"
description = f"""
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
#### This app uses models trained with [so-vits-svc-fork](https://github.com/voicepaw/so-vits-svc-fork) to clone a voice. Model currently being used is https://hf.co/{repo_id}. To change the model being served, duplicate the space and update the `repo_id`/other settings in `app.py`.
#### Train Your Own: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nateraw/voice-cloning/blob/main/training_so_vits_svc_fork.ipynb)
""".strip()
article = """
<p style='text-align: center'> 注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。用户生成内容与程序开发者无关,请自觉合法合规使用,违反者一切后果自负。
</p>
""".strip()
interface_mic = gr.Interface(
predict,
inputs=[
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"),
gr.Audio(type="filepath", source="microphone", label="Source Audio"),
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"),
gr.Checkbox(False, label="Auto Predict F0"),
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="cluster infer ratio"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"),
gr.Dropdown(
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
value=default_f0_method,
label="f0 method",
),
],
outputs="audio",
title="🥳🎶🎡 - AI歌手:可从网址直接上传素材,且无需分离背景音",
description=description,
article=article,
)
interface_file = gr.Interface(
predict,
inputs=[
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"),
gr.Audio(type="filepath", source="upload", label="Source Audio"),
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"),
gr.Checkbox(False, label="Auto Predict F0"),
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="cluster infer ratio"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"),
gr.Dropdown(
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
value=default_f0_method,
label="f0 method",
),
],
outputs="audio",
title="🥳🎶🎡 - AI歌手:可从网址直接上传素材,且无需分离背景音",
description=description,
article=article,
)
interface_yt = gr.Interface(
predict_song_from_yt,
inputs=[
gr.Textbox(
label="Bilibili网址", info="请填写含有您喜欢的声音的Bilibili网址"
),
gr.Number(value=0, label="Start Time (seconds)"),
gr.Number(value=15, label="End Time (seconds)"),
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"),
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"),
gr.Checkbox(False, label="Auto Predict F0"),
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="cluster infer ratio"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"),
gr.Dropdown(
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
value=default_f0_method,
label="f0 method",
),
],
outputs=["audio", "audio"],
title="🥳🎶🎡 - AI歌手:可从网址直接上传素材,且无需分离背景音",
description=description,
article=article,
examples=[
["COz9lDCFHjw", 75, 90, speakers[0], 0, False, default_cluster_infer_ratio, 0.4, default_f0_method],
["dQw4w9WgXcQ", 21, 35, speakers[0], 0, False, default_cluster_infer_ratio, 0.4, default_f0_method],
["Wvm5GuDfAas", 15, 30, speakers[0], 0, False, default_cluster_infer_ratio, 0.4, default_f0_method],
],
)
interface = gr.TabbedInterface(
[interface_mic, interface_file, interface_yt],
["从麦克风上传", "从文件上传", "从Bilibili上传"],
)
if __name__ == "__main__":
interface.launch()