kevinwang676's picture
Update app.py
b67aeec
raw
history blame
11 kB
import os
os.system("pip install git+https://github.com/suno-ai/bark.git")
from bark.generation import SUPPORTED_LANGS
from bark import SAMPLE_RATE, generate_audio
from scipy.io.wavfile import write as write_wav
from datetime import datetime
import shutil
import gradio as gr
import sys
import string
import time
import argparse
import json
import numpy as np
# import IPython
# from IPython.display import Audio
import torch
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
from TTS.utils.audio import AudioProcessor
except:
from TTS.utils.audio import AudioProcessor
from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *
from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment
# from google.colab import files
import librosa
from scipy.io.wavfile import write, read
import subprocess
'''
from google.colab import drive
drive.mount('/content/drive')
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')
shutil.copy(src_path, dst_path)
'''
TTS_PATH = "TTS/"
# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
# Paths definition
OUT_PATH = 'out/'
# create output path
os.makedirs(OUT_PATH, exist_ok=True)
# model vars
MODEL_PATH = 'best_model.pth.tar'
CONFIG_PATH = 'config.json'
TTS_LANGUAGES = "language_ids.json"
TTS_SPEAKERS = "speakers.json"
USE_CUDA = torch.cuda.is_available()
# load the config
C = load_config(CONFIG_PATH)
# load the audio processor
ap = AudioProcessor(**C.audio)
speaker_embedding = None
C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False
model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
if "speaker_encoder" in key:
del model_weights[key]
model.load_state_dict(model_weights)
model.eval()
if USE_CUDA:
model = model.cuda()
# synthesize voice
use_griffin_lim = False
# Paths definition
CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
# Load the Speaker encoder
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
# Define helper function
def compute_spec(ref_file):
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
spec = ap.spectrogram(y)
spec = torch.FloatTensor(spec).unsqueeze(0)
return spec
def voice_conversion(ta, ra, da):
target_audio = 'target.wav'
reference_audio = 'reference.wav'
driving_audio = 'driving.wav'
write(target_audio, ta[0], ta[1])
write(reference_audio, ra[0], ra[1])
write(driving_audio, da[0], da[1])
# !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
# !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
# !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f
files = [target_audio, reference_audio, driving_audio]
for file in files:
subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])
# ta_ = read(target_audio)
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
target_emb = torch.FloatTensor(target_emb).unsqueeze(0)
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)
# Convert the voice
driving_spec = compute_spec(driving_audio)
y_lengths = torch.tensor([driving_spec.size(-1)])
if USE_CUDA:
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
else:
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()
# print("Reference Audio after decoder:")
# IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))
return (ap.sample_rate, ref_wav_voc)
def generate_text_to_speech(text_prompt, selected_speaker, text_temp, waveform_temp):
audio_array = generate_audio(text_prompt, selected_speaker, text_temp, waveform_temp)
now = datetime.now()
date_str = now.strftime("%m-%d-%Y")
time_str = now.strftime("%H-%M-%S")
outputs_folder = os.path.join(os.getcwd(), "outputs")
if not os.path.exists(outputs_folder):
os.makedirs(outputs_folder)
sub_folder = os.path.join(outputs_folder, date_str)
if not os.path.exists(sub_folder):
os.makedirs(sub_folder)
file_name = f"audio_{time_str}.wav"
file_path = os.path.join(sub_folder, file_name)
write_wav(file_path, SAMPLE_RATE, audio_array)
return file_path
speakers_list = []
for lang, code in SUPPORTED_LANGS:
for n in range(10):
speakers_list.append(f"{code}_speaker_{n}")
examples1 = [
["Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe.",
"Speaker 1 (en)", 0.7, 0.7]
]
examples2 = [["test.wav", "Bark.wav", "Bark.wav"]]
with gr.Blocks() as demo:
gr.Markdown(
f""" # <center>🐶🎶🥳 - Bark with Voice Cloning</center>
### <center>🤗 - Powered by [Bark](https://huggingface.co/spaces/suno/bark) and [YourTTS](https://github.com/Edresson/YourTTS). Inspired by [bark-webui](https://github.com/makawy7/bark-webui).</center>
1. You can duplicate and use it with a GPU: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a>
2. First use Bark to generate audio from text and then use YourTTS to get new audio in a custom voice you like. Easy to use!
3. For voice cloning longer reference audio (~90s) will generally lead to better quality of the cloned speech. Also make sure the input audio generated by Bark is not too short.
"""
)
with gr.Row().style(equal_height=True):
inp1 = gr.Textbox(label="Input Text", lines=4, placeholder="Enter text here...")
inp3 = gr.Slider(
0.1,
1.0,
value=0.7,
label="Generation Temperature",
info="1.0 more diverse, 0.1 more conservative",
)
inp4 = gr.Slider(
0.1, 1.0, value=0.7, label="Waveform Temperature", info="1.0 more diverse, 0.1 more conservative"
)
with gr.Row().style(equal_height=True):
inp2 = gr.Dropdown(speakers_list, value=speakers_list[1], label="Acoustic Prompt")
button = gr.Button("Generate using Bark")
out1 = gr.Audio(label="Generated Audio")
button.click(generate_text_to_speech, [inp1, inp2, inp3, inp4], [out1])
with gr.Row().style(equal_height=True):
inp5 = gr.Audio(label="Upload Reference Audio for Voice Cloning Here")
inp6 = out1
inp7 = out1
btn = gr.Button("Generate using YourTTS")
out2 = gr.Audio(label="Generated Audio in a Custom Voice")
btn.click(voice_conversion, [inp5, inp6, inp7], [out2])
gr.Examples(examples=examples1, fn=generate_text_to_speech, inputs=[inp1, inp2, inp3, inp4],
outputs=[out1], cache_examples=True)
gr.Examples(examples=examples2, fn=voice_conversion, inputs=[inp5, inp6, inp7],
outputs=[out2], cache_examples=True)
gr.Markdown(
""" ### <center>NOTE: Please do not generate any audio that is potentially harmful to any person or organization❗</center>
"""
)
gr.Markdown(
"""
### <center>😄 - You may also apply [VoiceFixer](https://huggingface.co/spaces/Kevin676/VoiceFixer) to the generated audio in order to enhance the speech.</center>
## 🌎 Foreign Language
Bark supports various languages out-of-the-box and automatically determines language from input text. \
When prompted with code-switched text, Bark will even attempt to employ the native accent for the respective languages in the same voice.
Try the prompt:
```
Buenos días Miguel. Tu colega piensa que tu alemán es extremadamente malo. But I suppose your english isn't terrible.
```
## 🤭 Non-Speech Sounds
Below is a list of some known non-speech sounds, but we are finding more every day. \
Please let us know if you find patterns that work particularly well on Discord!
* [laughter]
* [laughs]
* [sighs]
* [music]
* [gasps]
* [clears throat]
* — or ... for hesitations
* ♪ for song lyrics
* capitalization for emphasis of a word
* MAN/WOMAN: for bias towards speaker
Try the prompt:
```
" [clears throat] Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as... ♪ singing ♪."
```
## 🎶 Music
Bark can generate all types of audio, and, in principle, doesn't see a difference between speech and music. \
Sometimes Bark chooses to generate text as music, but you can help it out by adding music notes around your lyrics.
Try the prompt:
```
♪ In the jungle, the mighty jungle, the lion barks tonight ♪
```
## 🧬 Voice Cloning
Bark has the capability to fully clone voices - including tone, pitch, emotion and prosody. \
The model also attempts to preserve music, ambient noise, etc. from input audio. \
However, to mitigate misuse of this technology, we limit the audio history prompts to a limited set of Suno-provided, fully synthetic options to choose from.
## 👥 Speaker Prompts
You can provide certain speaker prompts such as NARRATOR, MAN, WOMAN, etc. \
Please note that these are not always respected, especially if a conflicting audio history prompt is given.
Try the prompt:
```
WOMAN: I would like an oatmilk latte please.
MAN: Wow, that's expensive!
```
## Details
Bark model by [Suno](https://suno.ai/), including official [code](https://github.com/suno-ai/bark) and model weights. \
Gradio demo supported by 🤗 Hugging Face. Bark is licensed under a non-commercial license: CC-BY 4.0 NC, see details on [GitHub](https://github.com/suno-ai/bark).
"""
)
gr.HTML('''
<div class="footer">
<p>🎶🖼️🎡 - It’s the intersection of technology and liberal arts that makes our hearts sing — Steve Jobs
</p>
</div>
''')
demo.queue().launch(show_error=True)