File size: 10,688 Bytes
4ac3fe7 16ddf32 4ac3fe7 bff1af0 b67aeec 4ac3fe7 0d4b5e7 4ac3fe7 b67aeec 4ac3fe7 08fda23 4ac3fe7 b67aeec bff1af0 b67aeec 4ac3fe7 4b2dd38 4ac3fe7 4b2dd38 4ac3fe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
os.system("pip install git+https://github.com/suno-ai/bark.git")
from bark.generation import SUPPORTED_LANGS
from bark import SAMPLE_RATE, generate_audio
from scipy.io.wavfile import write as write_wav
from datetime import datetime
import shutil
import gradio as gr
import sys
import string
import time
import argparse
import json
import numpy as np
# import IPython
# from IPython.display import Audio
import torch
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
from TTS.utils.audio import AudioProcessor
except:
from TTS.utils.audio import AudioProcessor
from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *
from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment
# from google.colab import files
import librosa
from scipy.io.wavfile import write, read
import subprocess
'''
from google.colab import drive
drive.mount('/content/drive')
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')
shutil.copy(src_path, dst_path)
'''
TTS_PATH = "TTS/"
# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
# Paths definition
OUT_PATH = 'out/'
# create output path
os.makedirs(OUT_PATH, exist_ok=True)
# model vars
MODEL_PATH = 'best_model.pth.tar'
CONFIG_PATH = 'config.json'
TTS_LANGUAGES = "language_ids.json"
TTS_SPEAKERS = "speakers.json"
USE_CUDA = torch.cuda.is_available()
# load the config
C = load_config(CONFIG_PATH)
# load the audio processor
ap = AudioProcessor(**C.audio)
speaker_embedding = None
C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False
model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
if "speaker_encoder" in key:
del model_weights[key]
model.load_state_dict(model_weights)
model.eval()
if USE_CUDA:
model = model.cuda()
# synthesize voice
use_griffin_lim = False
# Paths definition
CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
# Load the Speaker encoder
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
# Define helper function
def compute_spec(ref_file):
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
spec = ap.spectrogram(y)
spec = torch.FloatTensor(spec).unsqueeze(0)
return spec
def voice_conversion(ta, ra, da):
target_audio = 'target.wav'
reference_audio = 'reference.wav'
driving_audio = 'driving.wav'
write(target_audio, ta[0], ta[1])
write(reference_audio, ra[0], ra[1])
write(driving_audio, da[0], da[1])
# !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
# !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
# !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f
files = [target_audio, reference_audio, driving_audio]
for file in files:
subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])
# ta_ = read(target_audio)
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
target_emb = torch.FloatTensor(target_emb).unsqueeze(0)
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)
# Convert the voice
driving_spec = compute_spec(driving_audio)
y_lengths = torch.tensor([driving_spec.size(-1)])
if USE_CUDA:
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
else:
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()
# print("Reference Audio after decoder:")
# IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))
return (ap.sample_rate, ref_wav_voc)
def generate_text_to_speech(text_prompt, selected_speaker, text_temp, waveform_temp):
audio_array = generate_audio(text_prompt, selected_speaker, text_temp, waveform_temp)
now = datetime.now()
date_str = now.strftime("%m-%d-%Y")
time_str = now.strftime("%H-%M-%S")
outputs_folder = os.path.join(os.getcwd(), "outputs")
if not os.path.exists(outputs_folder):
os.makedirs(outputs_folder)
sub_folder = os.path.join(outputs_folder, date_str)
if not os.path.exists(sub_folder):
os.makedirs(sub_folder)
file_name = f"audio_{time_str}.wav"
file_path = os.path.join(sub_folder, file_name)
write_wav(file_path, SAMPLE_RATE, audio_array)
return file_path
speakers_list = []
for lang, code in SUPPORTED_LANGS:
for n in range(10):
speakers_list.append(f"{code}_speaker_{n}")
examples1 = [["reference.wav", "Bark.wav", "Bark.wav"]]
with gr.Blocks() as demo:
gr.Markdown(
f""" # <center>🐶🎶🥳 - Bark with Voice Cloning</center>
### <center>🤗 - Powered by [Bark](https://huggingface.co/spaces/suno/bark) and [YourTTS](https://github.com/Edresson/YourTTS). Inspired by [bark-webui](https://github.com/makawy7/bark-webui).</center>
1. You can duplicate and use it with a GPU: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a>
2. First use Bark to generate audio from text and then use YourTTS to get new audio in a custom voice you like. Easy to use!
3. For voice cloning longer reference audio (~90s) will generally lead to better quality of the cloned speech. Also make sure the input audio generated by Bark is not too short.
"""
)
with gr.Row().style(equal_height=True):
inp1 = gr.Textbox(label="Input Text", lines=4, placeholder="Enter text here...")
inp3 = gr.Slider(
0.1,
1.0,
value=0.7,
label="Generation Temperature",
info="1.0 more diverse, 0.1 more conservative",
)
inp4 = gr.Slider(
0.1, 1.0, value=0.7, label="Waveform Temperature", info="1.0 more diverse, 0.1 more conservative"
)
with gr.Row().style(equal_height=True):
inp2 = gr.Dropdown(speakers_list, value=speakers_list[1], label="Acoustic Prompt")
button = gr.Button("Generate using Bark")
out1 = gr.Audio(label="Generated Audio")
button.click(generate_text_to_speech, [inp1, inp2, inp3, inp4], [out1])
with gr.Row().style(equal_height=True):
inp5 = gr.Audio(label="Upload Reference Audio for Voice Cloning Here")
inp6 = out1
inp7 = out1
btn = gr.Button("Generate using YourTTS")
out2 = gr.Audio(label="Generated Audio in a Custom Voice")
btn.click(voice_conversion, [inp5, inp6, inp7], [out2])
gr.Examples(examples=examples1, fn=voice_conversion, inputs=[inp5, inp6, inp7],
outputs=[out2], cache_examples=True)
gr.Markdown(
""" ### <center>NOTE: Please do not generate any audio that is potentially harmful to any person or organization❗</center>
"""
)
gr.Markdown(
"""
### <center>😄 - You may also apply [VoiceFixer](https://huggingface.co/spaces/Kevin676/VoiceFixer) to the generated audio in order to enhance the speech.</center>
## 🌎 Foreign Language
Bark supports various languages out-of-the-box and automatically determines language from input text. \
When prompted with code-switched text, Bark will even attempt to employ the native accent for the respective languages in the same voice.
Try the prompt:
```
Buenos días Miguel. Tu colega piensa que tu alemán es extremadamente malo. But I suppose your english isn't terrible.
```
## 🤭 Non-Speech Sounds
Below is a list of some known non-speech sounds, but we are finding more every day. \
Please let us know if you find patterns that work particularly well on Discord!
* [laughter]
* [laughs]
* [sighs]
* [music]
* [gasps]
* [clears throat]
* — or ... for hesitations
* ♪ for song lyrics
* capitalization for emphasis of a word
* MAN/WOMAN: for bias towards speaker
Try the prompt:
```
" [clears throat] Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as... ♪ singing ♪."
```
## 🎶 Music
Bark can generate all types of audio, and, in principle, doesn't see a difference between speech and music. \
Sometimes Bark chooses to generate text as music, but you can help it out by adding music notes around your lyrics.
Try the prompt:
```
♪ In the jungle, the mighty jungle, the lion barks tonight ♪
```
## 🧬 Voice Cloning
Bark has the capability to fully clone voices - including tone, pitch, emotion and prosody. \
The model also attempts to preserve music, ambient noise, etc. from input audio. \
However, to mitigate misuse of this technology, we limit the audio history prompts to a limited set of Suno-provided, fully synthetic options to choose from.
## 👥 Speaker Prompts
You can provide certain speaker prompts such as NARRATOR, MAN, WOMAN, etc. \
Please note that these are not always respected, especially if a conflicting audio history prompt is given.
Try the prompt:
```
WOMAN: I would like an oatmilk latte please.
MAN: Wow, that's expensive!
```
## Details
Bark model by [Suno](https://suno.ai/), including official [code](https://github.com/suno-ai/bark) and model weights. \
Gradio demo supported by 🤗 Hugging Face. Bark is licensed under a non-commercial license: CC-BY 4.0 NC, see details on [GitHub](https://github.com/suno-ai/bark).
"""
)
gr.HTML('''
<div class="footer">
<p>🎶🖼️🎡 - It’s the intersection of technology and liberal arts that makes our hearts sing — Steve Jobs
</p>
</div>
''')
demo.queue().launch(show_error=True) |