Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import torch | |
import numpy as np | |
from transformers import pipeline | |
name_list = ['microsoft/biogpt', 'stanford-crfm/BioMedLM', 'facebook/galactica-1.3b'] | |
examples = [['COVID-19 is'],['A 65-year-old female patient with a past medical history of']] | |
print(f"Is CUDA available: {torch.cuda.is_available()}") | |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") | |
pipe_biogpt = pipeline("text-generation", model="microsoft/BioGPT-Large", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16}) | |
pipe_biomedlm = pipeline("text-generation", model="stanford-crfm/BioMedLM", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16}) | |
pipe_galactica = pipeline("text-generation", model="facebook/galactica-1.3b", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16}) | |
title = "Compare generative biomedical LLMs!" | |
description = "**Disclaimer:** this demo was made for research purposes only and should not be used for medical purposes." | |
def inference(text): | |
output_biogpt = pipe_biogpt(text, max_length=100)[0]["generated_text"] | |
output_biomedlm = pipe_biomedlm(text, max_length=100)[0]["generated_text"] | |
output_galactica = pipe_galactica(text, max_length=100)[0]["generated_text"] | |
return [ | |
output_biogpt, | |
output_biomedlm, | |
output_galactica | |
] | |
io = gr.Interface( | |
inference, | |
gr.Textbox(lines=3), | |
outputs=[ | |
gr.Textbox(lines=3, label="BioGPT-Large"), | |
gr.Textbox(lines=3, label="BioMedLM (fka PubmedGPT)"), | |
gr.Textbox(lines=3, label="Galactica 1.3B"), | |
], | |
title=title, | |
description=description, | |
examples=examples | |
) | |
io.launch() | |