import gradio as gr import torch from diffusers import StableDiffusionPipeline def image_generation(prompt): device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium", torch_dtype=torch.float16 if device == "cuda" else torch.float32, ) #pipeline.to(device) pipeline.enable_model_cpu_offload() image = pipeline( prompt=prompt, negative_prompt="blurred, ugly, watermark, low resolution, blurry, nude", num_inference_steps=40, height=1024, width=1024, guidance_scale=8.0 ).images[0] return image interface = gr.Interface( fn=image_generation, inputs=gr.Textbox(lines=2, placeholder="Enter Your Prompt ..."), outputs=gr.Image(type="pil"), title="AI Text Generation By SD-3M" ) interface.launch() # import gradio as gr # import torch # from diffusers import StableDiffusers3Pipeline # def image_generation(prompt): # device = "cuda" if torch.cuda.is_available() else "cpu" # pipeline = StableDiffusers3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", # torch_dtype=torch.float16 if device == "cuda" else torch.float32, # text_encoder_3 = None, # tokenizer_3 = None) # # pipeline.to(device) # pipeline.enable_model_cpu_offload() # image = pipeline( # prompt = prompt, # negative_prompt = "blurred, ugly, watermark, low resolution, blurry, nude", # num_inference_steps = 40, # height=1024, # width=1024, # guidance_scale=8.0 # ).images[0] # image.show() # interface= gr.interface( # fn=image_generation, # inputs = gr.Textbox(lines="2", placeholder="Enter Your Prompt ..."), # outputs = gr.Image(type="pil"), # title = "AI Text Generation By SD-3M" # ) # interface.launch()