kasper-boy commited on
Commit
84ee036
β€’
1 Parent(s): 7b215b6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -8
app.py CHANGED
@@ -1,26 +1,33 @@
 
1
  import torch
2
  import gradio as gr
3
  from PIL import Image
4
  from diffusers import StableDiffusionPipeline
5
-
6
- # Use a pipeline as a high-level helper
7
  from transformers import pipeline
 
 
 
 
 
 
 
 
 
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
11
  caption_image = pipeline("image-to-text",
12
  model="Salesforce/blip-image-captioning-large", device=device)
13
 
14
-
15
  def image_generation(prompt):
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
  pipeline = StableDiffusionPipeline.from_pretrained(
18
  "stabilityai/stable-diffusion-3-medium",
19
  torch_dtype=torch.float16 if device == "cuda" else torch.float32,
 
20
  )
21
- #pipeline.to(device)
22
  pipeline.enable_model_cpu_offload()
23
-
24
  image = pipeline(
25
  prompt=prompt + " 8K, Ultra HD",
26
  negative_prompt="blurred, ugly, watermark, low resolution, blurry, nude",
@@ -38,8 +45,8 @@ def caption_my_image(pil_image):
38
  return images
39
 
40
  demo = gr.Interface(fn=caption_my_image,
41
- inputs=[gr.Image(label="Select Image",type="pil")],
42
- outputs=[gr.Image(label="New Image genrated using SD3",type="pil")],
43
  title="PicTalker | ImageNarrator | SnapSpeech | SpeakScene",
44
  description="🌟 Transform Ordinary Photos into Extraordinary Art!")
45
- demo.launch()
 
1
+ import os
2
  import torch
3
  import gradio as gr
4
  from PIL import Image
5
  from diffusers import StableDiffusionPipeline
 
 
6
  from transformers import pipeline
7
+ from dotenv import load_dotenv
8
+
9
+ # Load environment variables from .env file
10
+ load_dotenv()
11
+
12
+ # Set Hugging Face API token from environment variable
13
+ hf_token = os.getenv('HF_TOKEN')
14
+ if not hf_token:
15
+ raise ValueError("Hugging Face API token not found. Please set HF_TOKEN in your .env file.")
16
 
17
  device = "cuda" if torch.cuda.is_available() else "cpu"
18
 
19
  caption_image = pipeline("image-to-text",
20
  model="Salesforce/blip-image-captioning-large", device=device)
21
 
 
22
  def image_generation(prompt):
23
  device = "cuda" if torch.cuda.is_available() else "cpu"
24
  pipeline = StableDiffusionPipeline.from_pretrained(
25
  "stabilityai/stable-diffusion-3-medium",
26
  torch_dtype=torch.float16 if device == "cuda" else torch.float32,
27
+ use_auth_token=hf_token # Use the Hugging Face API token for authentication
28
  )
 
29
  pipeline.enable_model_cpu_offload()
30
+
31
  image = pipeline(
32
  prompt=prompt + " 8K, Ultra HD",
33
  negative_prompt="blurred, ugly, watermark, low resolution, blurry, nude",
 
45
  return images
46
 
47
  demo = gr.Interface(fn=caption_my_image,
48
+ inputs=[gr.Image(label="Select Image", type="pil")],
49
+ outputs=[gr.Image(label="New Image generated using SD3", type="pil")],
50
  title="PicTalker | ImageNarrator | SnapSpeech | SpeakScene",
51
  description="🌟 Transform Ordinary Photos into Extraordinary Art!")
52
+ demo.launch()