import torch import gradio as gr from PIL import Image import scipy.io.wavfile as wavfile # Use a pipeline as a high-level helper from transformers import pipeline device = "cuda" if torch.cuda.is_available() else "cpu" caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") def generate_audio(text): # Generate the narrated text narrated_text = narrator(text) # Save the audio to a WAV file wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) # Return the path to the saved audio file return "output.wav" def caption_my_image(pil_image): semantics = caption_image(images=pil_image)[0]['generated_text'] return generate_audio(semantics) demo = gr.Interface(fn=caption_my_image, inputs=[gr.Image(label="Select Image", type="pil")], outputs=[gr.Audio(label="Image Caption")], title="PicTalker | ImageNarrator | SnapSpeech | SpeakScene", description="Turn photos into phonetic wonders with audio captions.") demo.launch()