import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Load pre-trained model and tokenizer model_name = "t5-small" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Function to translate text def translate_text(text, source_lang, target_lang): input_text = f"translate {source_lang} to {target_lang}: {text}" inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True) outputs = model.generate(**inputs) translation = tokenizer.decode(outputs[0], skip_special_tokens=True) return translation # List of Indian languages indian_languages = [ "as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te", "ur" ] # Supported languages languages = ["en", "fr", "de", "es", "it"] + indian_languages # Create Gradio interface def translate_interface(text, source_lang, target_lang): return translate_text(text, source_lang, target_lang) iface = gr.Interface( fn=translate_interface, inputs=[ gr.Textbox(lines=2, placeholder="Enter text to translate"), gr.Dropdown(choices=languages, label="Source Language"), gr.Dropdown(choices=languages, label="Target Language") ], outputs="text", title="Hugging Face Translation App", description="Translate text from one language to another using a T5 model." ) if __name__ == "__main__": iface.launch()