Spaces:
Runtime error
Runtime error
File size: 8,490 Bytes
34630ca 8acddaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from typing import Tuple
import gradio as gr
import numpy as np
import supervision as sv
from inference import get_model
MARKDOWN = """
<h1 style='text-align: center'>Evolving-YOLO-V8-V9-V10</h1>
Welcome to Evolving-YOLO-V8-V9-V10! This demo showcases the performance of various YOLO models
pre-trained on the COCO dataset.
- **YOLOv8**
<div style="display: flex; align-items: center;">
<a href="https://github.com/ultralytics/ultralytics" style="margin-right: 10px;">
<img src="https://badges.aleen42.com/src/github.svg">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov8-object-detection-on-custom-dataset.ipynb" style="margin-right: 10px;">
<img src="https://colab.research.google.com/assets/colab-badge.svg">
</a>
</div>
- **YOLOv9**
<div style="display: flex; align-items: center;">
<a href="https://github.com/WongKinYiu/yolov9" style="margin-right: 10px;">
<img src="https://badges.aleen42.com/src/github.svg">
</a>
<a href="https://arxiv.org/abs/2402.13616" style="margin-right: 10px;">
<img src="https://img.shields.io/badge/arXiv-2402.13616-b31b1b.svg">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb" style="margin-right: 10px;">
<img src="https://colab.research.google.com/assets/colab-badge.svg">
</a>
</div>
- **YOLOv10**
<div style="display: flex; align-items: center;">
<a href="https://github.com/THU-MIG/yolov10" style="margin-right: 10px;">
<img src="https://badges.aleen42.com/src/github.svg">
</a>
<a href="https://arxiv.org/abs/2405.14458" style="margin-right: 10px;">
<img src="https://img.shields.io/badge/arXiv-2405.14458-b31b1b.svg">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov10-object-detection-on-custom-dataset.ipynb" style="margin-right: 10px;">
<img src="https://colab.research.google.com/assets/colab-badge.svg">
</a>
</div>
"""
IMAGE_EXAMPLES = [
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.3, 0.3, 0.1],
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.3, 0.3, 0.1],
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 0.3, 0.3, 0.1],
]
YOLO_V8_MODEL = get_model(model_id="coco/8")
YOLO_V9_MODEL = get_model(model_id="coco/17")
YOLO_V10_MODEL = get_model(model_id="coco/22")
LABEL_ANNOTATORS = sv.LabelAnnotator(text_color=sv.Color.black())
BOUNDING_BOX_ANNOTATORS = sv.BoundingBoxAnnotator()
def detect_and_annotate(
model,
input_image: np.ndarray,
confidence_threshold: float,
iou_threshold: float,
class_id_mapping: dict = None
) -> np.ndarray:
result = model.infer(
input_image,
confidence=confidence_threshold,
iou_threshold=iou_threshold
)[0]
detections = sv.Detections.from_inference(result)
if class_id_mapping:
detections.class_id = np.array([
class_id_mapping[class_id]
for class_id
in detections.class_id
])
labels = [
f"{class_name} ({confidence:.2f})"
for class_name, confidence
in zip(detections['class_name'], detections.confidence)
]
annotated_image = input_image.copy()
annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
scene=annotated_image, detections=detections)
annotated_image = LABEL_ANNOTATORS.annotate(
scene=annotated_image, detections=detections, labels=labels)
return annotated_image
def process_image(
input_image: np.ndarray,
yolo_v8_confidence_threshold: float,
yolo_v9_confidence_threshold: float,
yolo_v10_confidence_threshold: float,
iou_threshold: float
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
yolo_v8_annotated_image = detect_and_annotate(
YOLO_V8_MODEL, input_image, yolo_v8_confidence_threshold, iou_threshold)
yolo_v9_annotated_image = detect_and_annotate(
YOLO_V9_MODEL, input_image, yolo_v9_confidence_threshold, iou_threshold)
yolo_10_annotated_image = detect_and_annotate(
YOLO_V10_MODEL, input_image, yolo_v10_confidence_threshold, iou_threshold)
return (
yolo_v8_annotated_image,
yolo_v9_annotated_image,
yolo_10_annotated_image
)
yolo_v8_confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="YOLOv8 Confidence Threshold",
info=(
"The confidence threshold for the YOLO model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
yolo_v9_confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="YOLOv9 Confidence Threshold",
info=(
"The confidence threshold for the YOLO model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
yolo_v10_confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="YOLOv10 Confidence Threshold",
info=(
"The confidence threshold for the YOLO model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
iou_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.5,
step=0.01,
label="IoU Threshold",
info=(
"The Intersection over Union (IoU) threshold for non-maximum suppression. "
"Decrease the value to lessen the occurrence of overlapping bounding boxes, "
"making the detection process stricter. On the other hand, increase the value "
"to allow more overlapping bounding boxes, accommodating a broader range of "
"detections."
))
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Accordion("Configuration", open=False):
with gr.Row():
yolo_v8_confidence_threshold_component.render()
yolo_v9_confidence_threshold_component.render()
yolo_v10_confidence_threshold_component.render()
iou_threshold_component.render()
with gr.Row():
input_image_component = gr.Image(
type='pil',
label='Input'
)
yolo_v8_output_image_component = gr.Image(
type='pil',
label='YOLOv8'
)
with gr.Row():
yolo_v9_output_image_component = gr.Image(
type='pil',
label='YOLOv9'
)
yolo_v10_output_image_component = gr.Image(
type='pil',
label='YOLOv10'
)
submit_button_component = gr.Button(
value='Submit',
scale=1,
variant='primary'
)
gr.Examples(
fn=process_image,
examples=IMAGE_EXAMPLES,
inputs=[
input_image_component,
yolo_v8_confidence_threshold_component,
yolo_v9_confidence_threshold_component,
yolo_v10_confidence_threshold_component,
iou_threshold_component
],
outputs=[
yolo_v8_output_image_component,
yolo_v9_output_image_component,
yolo_v10_output_image_component
]
)
submit_button_component.click(
fn=process_image,
inputs=[
input_image_component,
yolo_v8_confidence_threshold_component,
yolo_v9_confidence_threshold_component,
yolo_v10_confidence_threshold_component,
iou_threshold_component
],
outputs=[
yolo_v8_output_image_component,
yolo_v9_output_image_component,
yolo_v10_output_image_component
]
)
if __name__ == "__main__":
demo.launch()
#demo.launch(debug=False, show_error=True, max_threads=1) |