import gradio as gr from PIL import Image, ImageDraw, ImageFont import scipy.io.wavfile as wavfile from transformers import pipeline # Initialize pipelines narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") object_detector = pipeline("object-detection", model="facebook/detr-resnet-101") # Constants FONT_PATH = None # Update this with the path to your custom font if needed FONT_SIZE = 20 BOX_COLOR = "red" TEXT_BACKGROUND_COLOR = "red" TEXT_COLOR = "white" def generate_audio(text): try: # Generate the narrated text narrated_text = narrator(text) # Save the audio to a WAV file wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) return "output.wav" except Exception as e: print(f"Error generating audio: {e}") return None def count_objects(detection_objects): object_counts = {} for detection in detection_objects: label = detection['label'] if label in object_counts: object_counts[label] += 1 else: object_counts[label] = 1 return object_counts def generate_text_from_objects(object_counts): response = "This picture contains" labels = list(object_counts.keys()) for i, label in enumerate(labels): count = object_counts[label] response += f" {count} {label}" if count > 1: response += "s" if i < len(labels) - 2: response += "," elif i == len(labels) - 2: response += " and" response += "." return response def draw_bounding_boxes(image, detections, font_path=FONT_PATH, font_size=FONT_SIZE): draw_image = image.copy() draw = ImageDraw.Draw(draw_image) font = ImageFont.truetype(font_path, font_size) if font_path else ImageFont.load_default() for detection in detections: box = detection['box'] xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax'] draw.rectangle([(xmin, ymin), (xmax, ymax)], outline=BOX_COLOR, width=3) label = detection['label'] score = detection['score'] text = f"{label} {score:.2f}" text_size = draw.textbbox((xmin, ymin), text, font=font) draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill=TEXT_BACKGROUND_COLOR) draw.text((xmin, ymin), text, fill=TEXT_COLOR, font=font) return draw_image def detect_object(image): try: detections = object_detector(image) processed_image = draw_bounding_boxes(image, detections) object_counts = count_objects(detections) natural_text = generate_text_from_objects(object_counts) processed_audio = generate_audio(natural_text) return processed_image, processed_audio except Exception as e: print(f"Error in object detection: {e}") return None, None demo = gr.Interface( fn=detect_object, inputs=[gr.Image(label="Select Image", type="pil")], outputs=[gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio")], title="AI-Powered Object Detection with Audio Feedback", description="Upload an image and get object detection results using the DETR model with a ResNet-101 backbone with Audio Feedback" ) demo.launch()