|
import gradio as gr |
|
from PIL import Image, ImageDraw, ImageFont |
|
import scipy.io.wavfile as wavfile |
|
from transformers import pipeline |
|
|
|
|
|
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") |
|
object_detector = pipeline("object-detection", model="facebook/detr-resnet-101") |
|
|
|
|
|
FONT_PATH = None |
|
FONT_SIZE = 20 |
|
BOX_COLOR = "red" |
|
TEXT_BACKGROUND_COLOR = "red" |
|
TEXT_COLOR = "white" |
|
|
|
|
|
def generate_audio(text): |
|
try: |
|
|
|
narrated_text = narrator(text) |
|
|
|
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], |
|
data=narrated_text["audio"][0]) |
|
return "output.wav" |
|
except Exception as e: |
|
print(f"Error generating audio: {e}") |
|
return None |
|
|
|
|
|
def count_objects(detection_objects): |
|
object_counts = {} |
|
for detection in detection_objects: |
|
label = detection['label'] |
|
if label in object_counts: |
|
object_counts[label] += 1 |
|
else: |
|
object_counts[label] = 1 |
|
return object_counts |
|
|
|
|
|
def generate_text_from_objects(object_counts): |
|
response = "This picture contains" |
|
labels = list(object_counts.keys()) |
|
for i, label in enumerate(labels): |
|
count = object_counts[label] |
|
response += f" {count} {label}" |
|
if count > 1: |
|
response += "s" |
|
if i < len(labels) - 2: |
|
response += "," |
|
elif i == len(labels) - 2: |
|
response += " and" |
|
response += "." |
|
return response |
|
|
|
|
|
def draw_bounding_boxes(image, detections, font_path=FONT_PATH, font_size=FONT_SIZE): |
|
draw_image = image.copy() |
|
draw = ImageDraw.Draw(draw_image) |
|
font = ImageFont.truetype(font_path, font_size) if font_path else ImageFont.load_default() |
|
|
|
for detection in detections: |
|
box = detection['box'] |
|
xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax'] |
|
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline=BOX_COLOR, width=3) |
|
|
|
label = detection['label'] |
|
score = detection['score'] |
|
text = f"{label} {score:.2f}" |
|
|
|
text_size = draw.textbbox((xmin, ymin), text, font=font) |
|
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill=TEXT_BACKGROUND_COLOR) |
|
draw.text((xmin, ymin), text, fill=TEXT_COLOR, font=font) |
|
|
|
return draw_image |
|
|
|
|
|
def detect_object(image): |
|
try: |
|
detections = object_detector(image) |
|
processed_image = draw_bounding_boxes(image, detections) |
|
object_counts = count_objects(detections) |
|
natural_text = generate_text_from_objects(object_counts) |
|
processed_audio = generate_audio(natural_text) |
|
return processed_image, processed_audio |
|
except Exception as e: |
|
print(f"Error in object detection: {e}") |
|
return None, None |
|
|
|
|
|
demo = gr.Interface( |
|
fn=detect_object, |
|
inputs=[gr.Image(label="Select Image", type="pil")], |
|
outputs=[gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio")], |
|
title="AI-Powered Object Detection with Audio Feedback", |
|
description="Upload an image and get object detection results using the DETR model with a ResNet-101 backbone with Audio Feedback" |
|
) |
|
|
|
demo.launch() |
|
|