import torch from transformers import DetrImageProcessor, DetrForObjectDetection from PIL import Image import gradio as gr import matplotlib.pyplot as plt import matplotlib.patches as patches import io # Load the processor and model processor = DetrImageProcessor.from_pretrained('facebook/detr-resnet-101') model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-101') def object_detection(image): # Preprocess the image inputs = processor(images=image, return_tensors="pt") # Perform object detection outputs = model(**inputs) # Extract bounding boxes and labels target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] # Plot the image with bounding boxes plt.figure(figsize=(16, 10)) plt.imshow(image) ax = plt.gca() for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] xmin, ymin, xmax, ymax = box width, height = xmax - xmin, ymax - ymin ax.add_patch(plt.Rectangle((xmin, ymin), width, height, fill=False, color='red', linewidth=3)) text = f'{model.config.id2label[label.item()]}: {round(score.item(), 3)}' ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5)) plt.axis('off') # Save the plot to an image buffer buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) plt.close() # Convert buffer to an Image object result_image = Image.open(buf) return result_image # Define the Gradio interface demo = gr.Interface( fn=object_detection, inputs=gr.Image(type="pil", label="Upload an Image"), outputs=gr.Image(type="pil", label="Detected Objects"), title="Object Detection with DETR (ResNet-101)", description="Upload an image and get object detection results using the DETR model with a ResNet-101 backbone.", ) # Launch the Gradio interface if __name__ == "__main__": demo.launch()