karanjakhar commited on
Commit
4e9c4c0
1 Parent(s): 256467e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -11
app.py CHANGED
@@ -2,8 +2,7 @@ import gradio as gr
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
-
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,13 +11,8 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("karanjakhar/speecht5_finetuned_voxpopuli_de")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("karanjakhar/speecht5_finetuned_voxpopuli_de").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
@@ -27,8 +21,12 @@ def translate(audio):
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
 
32
  return speech.cpu()
33
 
34
 
 
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
+ from transformers import VitsModel, VitsTokenizer
 
6
 
7
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
11
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
12
 
13
  # load text-to-speech checkpoint and speaker embeddings
14
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
15
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
 
 
 
 
 
16
 
17
 
18
  def translate(audio):
 
21
 
22
 
23
  def synthesise(text):
24
+ inputs = tokenizer(text, return_tensors="pt")
25
+ input_ids = inputs["input_ids"]
26
+ with torch.no_grad():
27
+ outputs = model(input_ids)
28
+
29
+ speech = outputs.audio[0]
30
  return speech.cpu()
31
 
32