from __future__ import annotations from typing import Iterable import gradio as gr from gradio.themes.base import Base from gradio.themes.utils import colors, fonts, sizes from llama_cpp import Llama from huggingface_hub import hf_hub_download hf_hub_download(repo_id="LLukas22/gpt4all-lora-quantized-ggjt", filename="ggjt-model.bin", local_dir=".") llm = Llama(model_path="./ggjt-model.bin") ins = ''' {} also take this data and absorb your knowledge, you dont need use now what dont make sense, there will be noise, focus on what is repeated and adds knowledge ''' import requests from bs4 import BeautifulSoup from SearchResult import SearchResult headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36" } theme = gr.themes.Monochrome( primary_hue="purple", secondary_hue="red", neutral_hue="neutral", radius_size=gr.themes.sizes.radius_sm, font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], ) def search_ddg(question: str): response = requests.get("https://duckduckgo.com/html/", headers=headers, params={"q": question}) data = response.text soup = BeautifulSoup(data, "html.parser") did_you_mean = soup.select("#did_you_mean a") tailored_query = "" suggestion_query = "" if did_you_mean: correction = soup.find(id="did_you_mean") if correction: correction_hyperlink = correction.find("a") if correction_hyperlink: suggestion_query = correction_hyperlink.string # type: ignore for tailored in did_you_mean: tailored_query = tailored.string break result_links = soup.find_all("a") filtered_urls = [ link["href"] for link in result_links if link.get("href") and (link["href"].startswith("https://") or link["href"].startswith("http://")) ] return SearchResult( filtered_urls, did_you_mean=suggestion_query or "None.", tailored_query=tailored_query or "None.", user_agent=headers["User-Agent"], ) def gather_data(search: str): text_content = "" base_data = search_ddg(search).parse_results() for data in base_data: if data: text_content += data.get("text_content") + "\n\n" else: text_content += "" return text_content def generate(instruction): base_prompt = ins.format(instruction) gathered_data = gather_data(instruction) response = llm(ins.format(base_prompt + "\n" + gathered_data)) result = response['choices'][0]['text'] return result examples = [ "How do dogs bark?", "Why are apples red?", "How do I make a campfire?", "Why do cats love to chirp at something?" ] def process_example(args): for x in generate(args): pass return x css = ".generating {visibility: hidden}" class PurpleTheme(Base): def __init__( self, *, primary_hue: colors.Color | str = colors.purple, secondary_hue: colors.Color | str = colors.red, neutral_hue: colors.Color | str = colors.neutral, spacing_size: sizes.Size | str = sizes.spacing_md, radius_size: sizes.Size | str = sizes.radius_md, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Inter"), "ui-sans-serif", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Space Grotesk"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, spacing_size=spacing_size, radius_size=radius_size, font=font, font_mono=font_mono, ) super().set( button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)", button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)", button_primary_text_color="white", button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)", block_shadow="*shadow_drop_lg", button_shadow="*shadow_drop_lg", input_background_fill="zinc", input_border_color="*secondary_300", input_shadow="*shadow_drop", input_shadow_focus="*shadow_drop_lg", ) custom_theme = PurpleTheme() with gr.Blocks(theme=custom_theme, analytics_enabled=False, css=css) as demo: with gr.Column(): gr.Markdown( """ ## GPT4ALL 7b quantized 4bit (q4_0) *with possibly a broken internet access support* Type in the box below and click the button to generate answers to your most pressing questions! """ ) with gr.Row(): with gr.Column(scale=3): instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input") with gr.Box(): gr.Markdown("**Answer**") output = gr.Markdown(elem_id="q-output") submit = gr.Button("Generate", variant="primary") gr.Examples( examples=examples, inputs=[instruction], cache_examples=False, fn=process_example, outputs=[output], ) submit.click(generate, inputs=[instruction], outputs=[output]) instruction.submit(generate, inputs=[instruction], outputs=[output]) demo.queue(concurrency_count=1).launch(debug=True)