File size: 7,105 Bytes
c19bd70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

import os
import random
import uuid

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler, AutoencoderKL

DESCRIPTION = """# Stable Diffusion 3"""
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = False
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_single_file(
        "https://huggingface.co/kadirnar/Black-Hole/blob/main/tachyon.safetensors",
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False,
        variant="fp16",
        vae=vae,
    )
    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    else:
        pipe.to(device)    
        print("Loaded on Device!")
    
    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        print("Model Compiled!")


def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU(enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    num_inference_steps=5,
    NUM_IMAGES_PER_PROMPT=1,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)
    sampling_schedule = [999, 845, 730, 587, 443, 310, 193, 116, 53, 13, 0]
    #pipe.scheduler = DPMSolverSinglestepScheduler(use_karras_sigmas=True).from_config(pipe.scheduler.config)
    #pipe.scheduler = DPMSolverMultistepScheduler(algorithm_type="sde-dpmsolver++").from_config(pipe.scheduler.config)
    
    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    
    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        use_resolution_binning=use_resolution_binning,
        output_type="pil",
    ).images

    return output


examples = [
    "neon holography crystal cat",
    "a cat eating a piece of cheese",
    "an astronaut riding a horse in space",
    "a cartoon of a boy playing with a tiger",
    "a cute robot artist painting on an easel, concept art",
    "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
]

css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column():
            gr.HTML(
            """
            <h1 style='text-align: center'>
            Fast Tachyon SDXL
            </h1>
            """
        )
            gr.HTML(
                """
                <h3 style='text-align: center'>
                Follow me for more! 
                <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
                </h3>
                """
        )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", elem_id="gallery", show_label=False)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                value = "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
                visible=True,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )

        steps = gr.Slider(
            label="Steps",
            minimum=0,
            maximum=15,
            step=1,
            value=4,
        )
        number_image = gr.Slider(
            label="Number of Image",
            minimum=1,
            maximum=4,
            step=1,
            value=1,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=10,
                step=0.1,
                value=2.0,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            steps,
            number_image,
        ],
        outputs=[result],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue().launch()