JohnSmith9982
commited on
Commit
•
b28a1a9
1
Parent(s):
ac74dc0
Upload 85 files
Browse files- ChuanhuChatbot.py +8 -9
- README.md +1 -1
- assets/custom.css +80 -72
- assets/custom.js +4 -4
- history/2023-06-14_15-05-04.json +0 -0
- modules/__pycache__/config.cpython-311.pyc +0 -0
- modules/__pycache__/config.cpython-39.pyc +0 -0
- modules/__pycache__/index_func.cpython-311.pyc +0 -0
- modules/__pycache__/index_func.cpython-39.pyc +0 -0
- modules/__pycache__/llama_func.cpython-39.pyc +0 -0
- modules/__pycache__/overwrites.cpython-311.pyc +0 -0
- modules/__pycache__/overwrites.cpython-39.pyc +0 -0
- modules/__pycache__/pdf_func.cpython-311.pyc +0 -0
- modules/__pycache__/pdf_func.cpython-39.pyc +0 -0
- modules/__pycache__/presets.cpython-311.pyc +0 -0
- modules/__pycache__/presets.cpython-39.pyc +0 -0
- modules/__pycache__/shared.cpython-311.pyc +0 -0
- modules/__pycache__/shared.cpython-39.pyc +0 -0
- modules/__pycache__/utils.cpython-311.pyc +0 -0
- modules/__pycache__/utils.cpython-39.pyc +0 -0
- modules/config.py +16 -12
- modules/index_func.py +141 -0
- modules/models/ChuanhuAgent.py +216 -0
- modules/models/__pycache__/ChuanhuAgent.cpython-311.pyc +0 -0
- modules/models/__pycache__/ChuanhuAgent.cpython-39.pyc +0 -0
- modules/models/__pycache__/base_model.cpython-311.pyc +0 -0
- modules/models/__pycache__/base_model.cpython-39.pyc +0 -0
- modules/models/__pycache__/minimax.cpython-39.pyc +0 -0
- modules/models/__pycache__/models.cpython-311.pyc +0 -0
- modules/models/__pycache__/models.cpython-39.pyc +0 -0
- modules/models/base_model.py +140 -49
- modules/models/minimax.py +161 -0
- modules/models/models.py +13 -6
- modules/overwrites.py +20 -28
- modules/pdf_func.py +7 -7
- modules/presets.py +21 -14
- modules/shared.py +17 -8
- modules/utils.py +75 -11
- requirements.txt +13 -6
ChuanhuChatbot.py
CHANGED
@@ -12,10 +12,10 @@ from modules.presets import *
|
|
12 |
from modules.overwrites import *
|
13 |
from modules.models.models import get_model
|
14 |
|
|
|
15 |
|
16 |
gr.Chatbot._postprocess_chat_messages = postprocess_chat_messages
|
17 |
gr.Chatbot.postprocess = postprocess
|
18 |
-
PromptHelper.compact_text_chunks = compact_text_chunks
|
19 |
|
20 |
with open("assets/custom.css", "r", encoding="utf-8") as f:
|
21 |
customCSS = f.read()
|
@@ -89,7 +89,6 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
89 |
with gr.Row():
|
90 |
single_turn_checkbox = gr.Checkbox(label=i18n("单轮对话"), value=False)
|
91 |
use_websearch_checkbox = gr.Checkbox(label=i18n("使用在线搜索"), value=False)
|
92 |
-
# render_latex_checkbox = gr.Checkbox(label=i18n("渲染LaTeX公式"), value=render_latex, interactive=True, elem_id="render_latex_checkbox")
|
93 |
language_select_dropdown = gr.Dropdown(
|
94 |
label=i18n("选择回复语言(针对搜索&索引功能)"),
|
95 |
choices=REPLY_LANGUAGES,
|
@@ -98,6 +97,7 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
98 |
)
|
99 |
index_files = gr.Files(label=i18n("上传"), type="file")
|
100 |
two_column = gr.Checkbox(label=i18n("双栏pdf"), value=advance_docs["pdf"].get("two_column", False))
|
|
|
101 |
# TODO: 公式ocr
|
102 |
# formula_ocr = gr.Checkbox(label=i18n("识别公式"), value=advance_docs["pdf"].get("formula_ocr", False))
|
103 |
|
@@ -161,7 +161,7 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
161 |
|
162 |
with gr.Tab(label=i18n("高级")):
|
163 |
gr.Markdown(i18n("# ⚠️ 务必谨慎更改 ⚠️\n\n如果无法使用请恢复默认设置"))
|
164 |
-
gr.HTML(
|
165 |
use_streaming_checkbox = gr.Checkbox(
|
166 |
label=i18n("实时传输回答"), value=True, visible=ENABLE_STREAMING_OPTION
|
167 |
)
|
@@ -265,7 +265,7 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
265 |
default_btn = gr.Button(i18n("🔙 恢复默认设置"))
|
266 |
|
267 |
gr.Markdown(CHUANHU_DESCRIPTION, elem_id="description")
|
268 |
-
gr.HTML(
|
269 |
|
270 |
# https://github.com/gradio-app/gradio/pull/3296
|
271 |
def create_greeting(request: gr.Request):
|
@@ -333,7 +333,8 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
333 |
submitBtn.click(**transfer_input_args).then(**chatgpt_predict_args, api_name="predict").then(**end_outputing_args)
|
334 |
submitBtn.click(**get_usage_args)
|
335 |
|
336 |
-
index_files.change(handle_file_upload, [current_model, index_files, chatbot], [index_files, chatbot, status_display])
|
|
|
337 |
|
338 |
emptyBtn.click(
|
339 |
reset,
|
@@ -467,8 +468,6 @@ demo.title = i18n("川虎Chat 🚀")
|
|
467 |
if __name__ == "__main__":
|
468 |
reload_javascript()
|
469 |
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
|
470 |
-
|
|
|
471 |
)
|
472 |
-
# demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=7860, share=False) # 可自定义端口
|
473 |
-
# demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=7860,auth=("在这里填写用户名", "在这里填写密码")) # 可设置用户名与密码
|
474 |
-
# demo.queue(concurrency_count=CONCURRENT_COUNT).launch(auth=("在这里填写用户名", "在这里填写密码")) # 适合Nginx反向代理
|
|
|
12 |
from modules.overwrites import *
|
13 |
from modules.models.models import get_model
|
14 |
|
15 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
16 |
|
17 |
gr.Chatbot._postprocess_chat_messages = postprocess_chat_messages
|
18 |
gr.Chatbot.postprocess = postprocess
|
|
|
19 |
|
20 |
with open("assets/custom.css", "r", encoding="utf-8") as f:
|
21 |
customCSS = f.read()
|
|
|
89 |
with gr.Row():
|
90 |
single_turn_checkbox = gr.Checkbox(label=i18n("单轮对话"), value=False)
|
91 |
use_websearch_checkbox = gr.Checkbox(label=i18n("使用在线搜索"), value=False)
|
|
|
92 |
language_select_dropdown = gr.Dropdown(
|
93 |
label=i18n("选择回复语言(针对搜索&索引功能)"),
|
94 |
choices=REPLY_LANGUAGES,
|
|
|
97 |
)
|
98 |
index_files = gr.Files(label=i18n("上传"), type="file")
|
99 |
two_column = gr.Checkbox(label=i18n("双栏pdf"), value=advance_docs["pdf"].get("two_column", False))
|
100 |
+
summarize_btn = gr.Button(i18n("总结"))
|
101 |
# TODO: 公式ocr
|
102 |
# formula_ocr = gr.Checkbox(label=i18n("识别公式"), value=advance_docs["pdf"].get("formula_ocr", False))
|
103 |
|
|
|
161 |
|
162 |
with gr.Tab(label=i18n("高级")):
|
163 |
gr.Markdown(i18n("# ⚠️ 务必谨慎更改 ⚠️\n\n如果无法使用请恢复默认设置"))
|
164 |
+
gr.HTML(get_html("appearance_switcher.html").format(label=i18n("切换亮暗色主题")), elem_classes="insert_block")
|
165 |
use_streaming_checkbox = gr.Checkbox(
|
166 |
label=i18n("实时传输回答"), value=True, visible=ENABLE_STREAMING_OPTION
|
167 |
)
|
|
|
265 |
default_btn = gr.Button(i18n("🔙 恢复默认设置"))
|
266 |
|
267 |
gr.Markdown(CHUANHU_DESCRIPTION, elem_id="description")
|
268 |
+
gr.HTML(get_html("footer.html").format(versions=versions_html()), elem_id="footer")
|
269 |
|
270 |
# https://github.com/gradio-app/gradio/pull/3296
|
271 |
def create_greeting(request: gr.Request):
|
|
|
333 |
submitBtn.click(**transfer_input_args).then(**chatgpt_predict_args, api_name="predict").then(**end_outputing_args)
|
334 |
submitBtn.click(**get_usage_args)
|
335 |
|
336 |
+
index_files.change(handle_file_upload, [current_model, index_files, chatbot, language_select_dropdown], [index_files, chatbot, status_display])
|
337 |
+
summarize_btn.click(handle_summarize_index, [current_model, index_files, chatbot, language_select_dropdown], [chatbot, status_display])
|
338 |
|
339 |
emptyBtn.click(
|
340 |
reset,
|
|
|
468 |
if __name__ == "__main__":
|
469 |
reload_javascript()
|
470 |
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
|
471 |
+
blocked_paths=["config.json"],
|
472 |
+
favicon_path="./assets/favicon.ico"
|
473 |
)
|
|
|
|
|
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🐯
|
|
4 |
colorFrom: green
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: ChuanhuChatbot.py
|
9 |
pinned: false
|
10 |
license: gpl-3.0
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.33.1
|
8 |
app_file: ChuanhuChatbot.py
|
9 |
pinned: false
|
10 |
license: gpl-3.0
|
assets/custom.css
CHANGED
@@ -405,7 +405,7 @@ thead th {
|
|
405 |
padding: .5em .2em;
|
406 |
}
|
407 |
/* 行内代码 */
|
408 |
-
code {
|
409 |
display: inline;
|
410 |
white-space: break-spaces;
|
411 |
border-radius: 6px;
|
@@ -414,13 +414,13 @@ code {
|
|
414 |
background-color: rgba(175,184,193,0.2);
|
415 |
}
|
416 |
/* 代码块 */
|
417 |
-
pre code {
|
418 |
display: block;
|
419 |
overflow: auto;
|
420 |
white-space: pre;
|
421 |
background-color: hsla(0, 0%, 0%, 80%)!important;
|
422 |
border-radius: 10px;
|
423 |
-
padding: 1.
|
424 |
margin: 0.6em 2em 1em 0.2em;
|
425 |
color: #FFF;
|
426 |
box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2);
|
@@ -428,73 +428,81 @@ pre code {
|
|
428 |
.message pre {
|
429 |
padding: 0 !important;
|
430 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
/* 代码高亮样式 */
|
432 |
-
.highlight .hll { background-color: #49483e }
|
433 |
-
.highlight .c { color: #75715e } /* Comment */
|
434 |
-
.highlight .err { color: #960050; background-color: #1e0010 } /* Error */
|
435 |
-
.highlight .k { color: #66d9ef
|
436 |
-
.highlight .l { color: #ae81ff
|
437 |
-
.highlight .n { color: #f8f8f2
|
438 |
-
.highlight .o { color: #f92672
|
439 |
-
.highlight .p { color: #f8f8f2
|
440 |
-
.highlight .ch { color: #75715e
|
441 |
-
.highlight .cm { color: #75715e
|
442 |
-
.highlight .cp { color: #75715e
|
443 |
-
.highlight .cpf { color: #75715e
|
444 |
-
.highlight .c1 { color: #75715e
|
445 |
-
.highlight .cs { color: #75715e
|
446 |
-
.highlight .gd { color: #f92672
|
447 |
-
.highlight .ge { font-style: italic
|
448 |
-
.highlight .gi { color: #a6e22e
|
449 |
-
.highlight .gs { font-weight: bold
|
450 |
-
.highlight .gu { color: #75715e
|
451 |
-
.highlight .kc { color: #66d9ef
|
452 |
-
.highlight .kd { color: #66d9ef
|
453 |
-
.highlight .kn { color: #f92672
|
454 |
-
.highlight .kp { color: #66d9ef
|
455 |
-
.highlight .kr { color: #66d9ef
|
456 |
-
.highlight .kt { color: #66d9ef
|
457 |
-
.highlight .ld { color: #e6db74
|
458 |
-
.highlight .m { color: #ae81ff
|
459 |
-
.highlight .s { color: #e6db74
|
460 |
-
.highlight .na { color: #a6e22e
|
461 |
-
.highlight .nb { color: #f8f8f2
|
462 |
-
.highlight .nc { color: #a6e22e
|
463 |
-
.highlight .no { color: #66d9ef
|
464 |
-
.highlight .nd { color: #a6e22e
|
465 |
-
.highlight .ni { color: #f8f8f2
|
466 |
-
.highlight .ne { color: #a6e22e
|
467 |
-
.highlight .nf { color: #a6e22e
|
468 |
-
.highlight .nl { color: #f8f8f2
|
469 |
-
.highlight .nn { color: #f8f8f2
|
470 |
-
.highlight .nx { color: #a6e22e
|
471 |
-
.highlight .py { color: #f8f8f2
|
472 |
-
.highlight .nt { color: #f92672
|
473 |
-
.highlight .nv { color: #f8f8f2
|
474 |
-
.highlight .ow { color: #f92672
|
475 |
-
.highlight .w { color: #f8f8f2
|
476 |
-
.highlight .mb { color: #ae81ff
|
477 |
-
.highlight .mf { color: #ae81ff
|
478 |
-
.highlight .mh { color: #ae81ff
|
479 |
-
.highlight .mi { color: #ae81ff
|
480 |
-
.highlight .mo { color: #ae81ff
|
481 |
-
.highlight .sa { color: #e6db74
|
482 |
-
.highlight .sb { color: #e6db74
|
483 |
-
.highlight .sc { color: #e6db74
|
484 |
-
.highlight .dl { color: #e6db74
|
485 |
-
.highlight .sd { color: #e6db74
|
486 |
-
.highlight .s2 { color: #e6db74
|
487 |
-
.highlight .se { color: #ae81ff
|
488 |
-
.highlight .sh { color: #e6db74
|
489 |
-
.highlight .si { color: #e6db74
|
490 |
-
.highlight .sx { color: #e6db74
|
491 |
-
.highlight .sr { color: #e6db74
|
492 |
-
.highlight .s1 { color: #e6db74
|
493 |
-
.highlight .ss { color: #e6db74
|
494 |
-
.highlight .bp { color: #f8f8f2
|
495 |
-
.highlight .fm { color: #a6e22e
|
496 |
-
.highlight .vc { color: #f8f8f2
|
497 |
-
.highlight .vg { color: #f8f8f2
|
498 |
-
.highlight .vi { color: #f8f8f2
|
499 |
-
.highlight .vm { color: #f8f8f2
|
500 |
-
.highlight .il { color: #ae81ff
|
|
|
405 |
padding: .5em .2em;
|
406 |
}
|
407 |
/* 行内代码 */
|
408 |
+
.message :not(pre) code {
|
409 |
display: inline;
|
410 |
white-space: break-spaces;
|
411 |
border-radius: 6px;
|
|
|
414 |
background-color: rgba(175,184,193,0.2);
|
415 |
}
|
416 |
/* 代码块 */
|
417 |
+
.message pre code {
|
418 |
display: block;
|
419 |
overflow: auto;
|
420 |
white-space: pre;
|
421 |
background-color: hsla(0, 0%, 0%, 80%)!important;
|
422 |
border-radius: 10px;
|
423 |
+
padding: 1.2em 1em 0em .5em;
|
424 |
margin: 0.6em 2em 1em 0.2em;
|
425 |
color: #FFF;
|
426 |
box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2);
|
|
|
428 |
.message pre {
|
429 |
padding: 0 !important;
|
430 |
}
|
431 |
+
.message pre code div.highlight {
|
432 |
+
background-color: unset !important;
|
433 |
+
}
|
434 |
+
|
435 |
+
button.copy-button {
|
436 |
+
display: none;
|
437 |
+
}
|
438 |
+
|
439 |
/* 代码高亮样式 */
|
440 |
+
.highlight .hll { background-color: #49483e !important }
|
441 |
+
.highlight .c { color: #75715e !important } /* Comment */
|
442 |
+
.highlight .err { color: #960050 !important; background-color: #1e0010 } /* Error */
|
443 |
+
.highlight .k { color: #66d9ef !important} /* Keyword */
|
444 |
+
.highlight .l { color: #ae81ff !important} /* Literal */
|
445 |
+
.highlight .n { color: #f8f8f2 !important} /* Name */
|
446 |
+
.highlight .o { color: #f92672 !important} /* Operator */
|
447 |
+
.highlight .p { color: #f8f8f2 !important} /* Punctuation */
|
448 |
+
.highlight .ch { color: #75715e !important} /* Comment.Hashbang */
|
449 |
+
.highlight .cm { color: #75715e !important} /* Comment.Multiline */
|
450 |
+
.highlight .cp { color: #75715e !important} /* Comment.Preproc */
|
451 |
+
.highlight .cpf { color: #75715e !important} /* Comment.PreprocFile */
|
452 |
+
.highlight .c1 { color: #75715e !important} /* Comment.Single */
|
453 |
+
.highlight .cs { color: #75715e !important} /* Comment.Special */
|
454 |
+
.highlight .gd { color: #f92672 !important} /* Generic.Deleted */
|
455 |
+
.highlight .ge { font-style: italic !important} /* Generic.Emph */
|
456 |
+
.highlight .gi { color: #a6e22e !important} /* Generic.Inserted */
|
457 |
+
.highlight .gs { font-weight: bold !important} /* Generic.Strong */
|
458 |
+
.highlight .gu { color: #75715e !important} /* Generic.Subheading */
|
459 |
+
.highlight .kc { color: #66d9ef !important} /* Keyword.Constant */
|
460 |
+
.highlight .kd { color: #66d9ef !important} /* Keyword.Declaration */
|
461 |
+
.highlight .kn { color: #f92672 !important} /* Keyword.Namespace */
|
462 |
+
.highlight .kp { color: #66d9ef !important} /* Keyword.Pseudo */
|
463 |
+
.highlight .kr { color: #66d9ef !important} /* Keyword.Reserved */
|
464 |
+
.highlight .kt { color: #66d9ef !important} /* Keyword.Type */
|
465 |
+
.highlight .ld { color: #e6db74 !important} /* Literal.Date */
|
466 |
+
.highlight .m { color: #ae81ff !important} /* Literal.Number */
|
467 |
+
.highlight .s { color: #e6db74 !important} /* Literal.String */
|
468 |
+
.highlight .na { color: #a6e22e !important} /* Name.Attribute */
|
469 |
+
.highlight .nb { color: #f8f8f2 !important} /* Name.Builtin */
|
470 |
+
.highlight .nc { color: #a6e22e !important} /* Name.Class */
|
471 |
+
.highlight .no { color: #66d9ef !important} /* Name.Constant */
|
472 |
+
.highlight .nd { color: #a6e22e !important} /* Name.Decorator */
|
473 |
+
.highlight .ni { color: #f8f8f2 !important} /* Name.Entity */
|
474 |
+
.highlight .ne { color: #a6e22e !important} /* Name.Exception */
|
475 |
+
.highlight .nf { color: #a6e22e !important} /* Name.Function */
|
476 |
+
.highlight .nl { color: #f8f8f2 !important} /* Name.Label */
|
477 |
+
.highlight .nn { color: #f8f8f2 !important} /* Name.Namespace */
|
478 |
+
.highlight .nx { color: #a6e22e !important} /* Name.Other */
|
479 |
+
.highlight .py { color: #f8f8f2 !important} /* Name.Property */
|
480 |
+
.highlight .nt { color: #f92672 !important} /* Name.Tag */
|
481 |
+
.highlight .nv { color: #f8f8f2 !important} /* Name.Variable */
|
482 |
+
.highlight .ow { color: #f92672 !important} /* Operator.Word */
|
483 |
+
.highlight .w { color: #f8f8f2 !important} /* Text.Whitespace */
|
484 |
+
.highlight .mb { color: #ae81ff !important} /* Literal.Number.Bin */
|
485 |
+
.highlight .mf { color: #ae81ff !important} /* Literal.Number.Float */
|
486 |
+
.highlight .mh { color: #ae81ff !important} /* Literal.Number.Hex */
|
487 |
+
.highlight .mi { color: #ae81ff !important} /* Literal.Number.Integer */
|
488 |
+
.highlight .mo { color: #ae81ff !important} /* Literal.Number.Oct */
|
489 |
+
.highlight .sa { color: #e6db74 !important} /* Literal.String.Affix */
|
490 |
+
.highlight .sb { color: #e6db74 !important} /* Literal.String.Backtick */
|
491 |
+
.highlight .sc { color: #e6db74 !important} /* Literal.String.Char */
|
492 |
+
.highlight .dl { color: #e6db74 !important} /* Literal.String.Delimiter */
|
493 |
+
.highlight .sd { color: #e6db74 !important} /* Literal.String.Doc */
|
494 |
+
.highlight .s2 { color: #e6db74 !important} /* Literal.String.Double */
|
495 |
+
.highlight .se { color: #ae81ff !important} /* Literal.String.Escape */
|
496 |
+
.highlight .sh { color: #e6db74 !important} /* Literal.String.Heredoc */
|
497 |
+
.highlight .si { color: #e6db74 !important} /* Literal.String.Interpol */
|
498 |
+
.highlight .sx { color: #e6db74 !important} /* Literal.String.Other */
|
499 |
+
.highlight .sr { color: #e6db74 !important} /* Literal.String.Regex */
|
500 |
+
.highlight .s1 { color: #e6db74 !important} /* Literal.String.Single */
|
501 |
+
.highlight .ss { color: #e6db74 !important} /* Literal.String.Symbol */
|
502 |
+
.highlight .bp { color: #f8f8f2 !important} /* Name.Builtin.Pseudo */
|
503 |
+
.highlight .fm { color: #a6e22e !important} /* Name.Function.Magic */
|
504 |
+
.highlight .vc { color: #f8f8f2 !important} /* Name.Variable.Class */
|
505 |
+
.highlight .vg { color: #f8f8f2 !important} /* Name.Variable.Global */
|
506 |
+
.highlight .vi { color: #f8f8f2 !important} /* Name.Variable.Instance */
|
507 |
+
.highlight .vm { color: #f8f8f2 !important} /* Name.Variable.Magic */
|
508 |
+
.highlight .il { color: #ae81ff !important} /* Literal.Number.Integer.Long */
|
assets/custom.js
CHANGED
@@ -245,11 +245,11 @@ function showOrHideUserInfo() {
|
|
245 |
|
246 |
function toggleDarkMode(isEnabled) {
|
247 |
if (isEnabled) {
|
248 |
-
|
249 |
-
document.body.style.setProperty("background-color", "var(--neutral-950)", "important");
|
250 |
} else {
|
251 |
-
|
252 |
-
document.body.style.backgroundColor = "";
|
253 |
}
|
254 |
}
|
255 |
function adjustDarkMode() {
|
|
|
245 |
|
246 |
function toggleDarkMode(isEnabled) {
|
247 |
if (isEnabled) {
|
248 |
+
document.body.classList.add("dark");
|
249 |
+
// document.body.style.setProperty("background-color", "var(--neutral-950)", "important");
|
250 |
} else {
|
251 |
+
document.body.classList.remove("dark");
|
252 |
+
// document.body.style.backgroundColor = "";
|
253 |
}
|
254 |
}
|
255 |
function adjustDarkMode() {
|
history/2023-06-14_15-05-04.json
ADDED
File without changes
|
modules/__pycache__/config.cpython-311.pyc
CHANGED
Binary files a/modules/__pycache__/config.cpython-311.pyc and b/modules/__pycache__/config.cpython-311.pyc differ
|
|
modules/__pycache__/config.cpython-39.pyc
CHANGED
Binary files a/modules/__pycache__/config.cpython-39.pyc and b/modules/__pycache__/config.cpython-39.pyc differ
|
|
modules/__pycache__/index_func.cpython-311.pyc
CHANGED
Binary files a/modules/__pycache__/index_func.cpython-311.pyc and b/modules/__pycache__/index_func.cpython-311.pyc differ
|
|
modules/__pycache__/index_func.cpython-39.pyc
CHANGED
Binary files a/modules/__pycache__/index_func.cpython-39.pyc and b/modules/__pycache__/index_func.cpython-39.pyc differ
|
|
modules/__pycache__/llama_func.cpython-39.pyc
CHANGED
Binary files a/modules/__pycache__/llama_func.cpython-39.pyc and b/modules/__pycache__/llama_func.cpython-39.pyc differ
|
|
modules/__pycache__/overwrites.cpython-311.pyc
CHANGED
Binary files a/modules/__pycache__/overwrites.cpython-311.pyc and b/modules/__pycache__/overwrites.cpython-311.pyc differ
|
|
modules/__pycache__/overwrites.cpython-39.pyc
CHANGED
Binary files a/modules/__pycache__/overwrites.cpython-39.pyc and b/modules/__pycache__/overwrites.cpython-39.pyc differ
|
|
modules/__pycache__/pdf_func.cpython-311.pyc
CHANGED
Binary files a/modules/__pycache__/pdf_func.cpython-311.pyc and b/modules/__pycache__/pdf_func.cpython-311.pyc differ
|
|
modules/__pycache__/pdf_func.cpython-39.pyc
CHANGED
Binary files a/modules/__pycache__/pdf_func.cpython-39.pyc and b/modules/__pycache__/pdf_func.cpython-39.pyc differ
|
|
modules/__pycache__/presets.cpython-311.pyc
CHANGED
Binary files a/modules/__pycache__/presets.cpython-311.pyc and b/modules/__pycache__/presets.cpython-311.pyc differ
|
|
modules/__pycache__/presets.cpython-39.pyc
CHANGED
Binary files a/modules/__pycache__/presets.cpython-39.pyc and b/modules/__pycache__/presets.cpython-39.pyc differ
|
|
modules/__pycache__/shared.cpython-311.pyc
CHANGED
Binary files a/modules/__pycache__/shared.cpython-311.pyc and b/modules/__pycache__/shared.cpython-311.pyc differ
|
|
modules/__pycache__/shared.cpython-39.pyc
CHANGED
Binary files a/modules/__pycache__/shared.cpython-39.pyc and b/modules/__pycache__/shared.cpython-39.pyc differ
|
|
modules/__pycache__/utils.cpython-311.pyc
CHANGED
Binary files a/modules/__pycache__/utils.cpython-311.pyc and b/modules/__pycache__/utils.cpython-311.pyc differ
|
|
modules/__pycache__/utils.cpython-39.pyc
CHANGED
Binary files a/modules/__pycache__/utils.cpython-39.pyc and b/modules/__pycache__/utils.cpython-39.pyc differ
|
|
modules/config.py
CHANGED
@@ -18,13 +18,13 @@ __all__ = [
|
|
18 |
"log_level",
|
19 |
"advance_docs",
|
20 |
"update_doc_config",
|
21 |
-
"render_latex",
|
22 |
"usage_limit",
|
23 |
"multi_api_key",
|
24 |
"server_name",
|
25 |
"server_port",
|
26 |
"share",
|
27 |
-
"hide_history_when_not_logged_in"
|
|
|
28 |
]
|
29 |
|
30 |
# 添加一个统一的config文件,避免文件过多造成的疑惑(优先级最低)
|
@@ -42,11 +42,11 @@ hide_history_when_not_logged_in = config.get("hide_history_when_not_logged_in",
|
|
42 |
|
43 |
if os.path.exists("api_key.txt"):
|
44 |
logging.info("检测到api_key.txt文件,正在进行迁移...")
|
45 |
-
with open("api_key.txt", "r") as f:
|
46 |
config["openai_api_key"] = f.read().strip()
|
47 |
os.rename("api_key.txt", "api_key(deprecated).txt")
|
48 |
with open("config.json", "w", encoding='utf-8') as f:
|
49 |
-
json.dump(config, f, indent=4)
|
50 |
|
51 |
if os.path.exists("auth.json"):
|
52 |
logging.info("检测到auth.json文件,正在进行迁移...")
|
@@ -62,7 +62,7 @@ if os.path.exists("auth.json"):
|
|
62 |
config["users"] = auth_list
|
63 |
os.rename("auth.json", "auth(deprecated).json")
|
64 |
with open("config.json", "w", encoding='utf-8') as f:
|
65 |
-
json.dump(config, f, indent=4)
|
66 |
|
67 |
## 处理docker if we are running in Docker
|
68 |
dockerflag = config.get("dockerflag", False)
|
@@ -76,12 +76,11 @@ my_api_key = os.environ.get("OPENAI_API_KEY", my_api_key)
|
|
76 |
xmchat_api_key = config.get("xmchat_api_key", "")
|
77 |
os.environ["XMCHAT_API_KEY"] = xmchat_api_key
|
78 |
|
79 |
-
|
|
|
|
|
|
|
80 |
|
81 |
-
if render_latex:
|
82 |
-
os.environ["RENDER_LATEX"] = "yes"
|
83 |
-
else:
|
84 |
-
os.environ["RENDER_LATEX"] = "no"
|
85 |
|
86 |
usage_limit = os.environ.get("USAGE_LIMIT", config.get("usage_limit", 120))
|
87 |
|
@@ -98,10 +97,15 @@ auth_list = config.get("users", []) # 实际上是使用者的列表
|
|
98 |
authflag = len(auth_list) > 0 # 是否开启认证的状态值,改为判断auth_list长度
|
99 |
|
100 |
# 处理自定义的api_host,优先读环境变量的配置,如果存在则自动装配
|
101 |
-
api_host = os.environ.get("
|
102 |
-
if api_host:
|
103 |
shared.state.set_api_host(api_host)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
105 |
@contextmanager
|
106 |
def retrieve_openai_api(api_key = None):
|
107 |
old_api_key = os.environ.get("OPENAI_API_KEY", "")
|
|
|
18 |
"log_level",
|
19 |
"advance_docs",
|
20 |
"update_doc_config",
|
|
|
21 |
"usage_limit",
|
22 |
"multi_api_key",
|
23 |
"server_name",
|
24 |
"server_port",
|
25 |
"share",
|
26 |
+
"hide_history_when_not_logged_in",
|
27 |
+
"default_chuanhu_assistant_model"
|
28 |
]
|
29 |
|
30 |
# 添加一个统一的config文件,避免文件过多造成的疑惑(优先级最低)
|
|
|
42 |
|
43 |
if os.path.exists("api_key.txt"):
|
44 |
logging.info("检测到api_key.txt文件,正在进行迁移...")
|
45 |
+
with open("api_key.txt", "r", encoding="utf-8") as f:
|
46 |
config["openai_api_key"] = f.read().strip()
|
47 |
os.rename("api_key.txt", "api_key(deprecated).txt")
|
48 |
with open("config.json", "w", encoding='utf-8') as f:
|
49 |
+
json.dump(config, f, indent=4, ensure_ascii=False)
|
50 |
|
51 |
if os.path.exists("auth.json"):
|
52 |
logging.info("检测到auth.json文件,正在进行迁移...")
|
|
|
62 |
config["users"] = auth_list
|
63 |
os.rename("auth.json", "auth(deprecated).json")
|
64 |
with open("config.json", "w", encoding='utf-8') as f:
|
65 |
+
json.dump(config, f, indent=4, ensure_ascii=False)
|
66 |
|
67 |
## 处理docker if we are running in Docker
|
68 |
dockerflag = config.get("dockerflag", False)
|
|
|
76 |
xmchat_api_key = config.get("xmchat_api_key", "")
|
77 |
os.environ["XMCHAT_API_KEY"] = xmchat_api_key
|
78 |
|
79 |
+
minimax_api_key = config.get("minimax_api_key", "")
|
80 |
+
os.environ["MINIMAX_API_KEY"] = minimax_api_key
|
81 |
+
minimax_group_id = config.get("minimax_group_id", "")
|
82 |
+
os.environ["MINIMAX_GROUP_ID"] = minimax_group_id
|
83 |
|
|
|
|
|
|
|
|
|
84 |
|
85 |
usage_limit = os.environ.get("USAGE_LIMIT", config.get("usage_limit", 120))
|
86 |
|
|
|
97 |
authflag = len(auth_list) > 0 # 是否开启认证的状态值,改为判断auth_list长度
|
98 |
|
99 |
# 处理自定义的api_host,优先读环境变量的配置,如果存在则自动装配
|
100 |
+
api_host = os.environ.get("OPENAI_API_BASE", config.get("openai_api_base", None))
|
101 |
+
if api_host is not None:
|
102 |
shared.state.set_api_host(api_host)
|
103 |
|
104 |
+
default_chuanhu_assistant_model = config.get("default_chuanhu_assistant_model", "gpt-3.5-turbo")
|
105 |
+
for x in ["GOOGLE_CSE_ID", "GOOGLE_API_KEY", "WOLFRAM_ALPHA_APPID", "SERPAPI_API_KEY"]:
|
106 |
+
if config.get(x, None) is not None:
|
107 |
+
os.environ[x] = config[x]
|
108 |
+
|
109 |
@contextmanager
|
110 |
def retrieve_openai_api(api_key = None):
|
111 |
old_api_key = os.environ.get("OPENAI_API_KEY", "")
|
modules/index_func.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import colorama
|
5 |
+
import PyPDF2
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
from modules.presets import *
|
9 |
+
from modules.utils import *
|
10 |
+
from modules.config import local_embedding
|
11 |
+
|
12 |
+
|
13 |
+
def get_index_name(file_src):
|
14 |
+
file_paths = [x.name for x in file_src]
|
15 |
+
file_paths.sort(key=lambda x: os.path.basename(x))
|
16 |
+
|
17 |
+
md5_hash = hashlib.md5()
|
18 |
+
for file_path in file_paths:
|
19 |
+
with open(file_path, "rb", encoding="utf-8") as f:
|
20 |
+
while chunk := f.read(8192):
|
21 |
+
md5_hash.update(chunk)
|
22 |
+
|
23 |
+
return md5_hash.hexdigest()
|
24 |
+
|
25 |
+
|
26 |
+
def get_documents(file_src):
|
27 |
+
from langchain.schema import Document
|
28 |
+
from langchain.text_splitter import TokenTextSplitter
|
29 |
+
text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
|
30 |
+
|
31 |
+
documents = []
|
32 |
+
logging.debug("Loading documents...")
|
33 |
+
logging.debug(f"file_src: {file_src}")
|
34 |
+
for file in file_src:
|
35 |
+
filepath = file.name
|
36 |
+
filename = os.path.basename(filepath)
|
37 |
+
file_type = os.path.splitext(filename)[1]
|
38 |
+
logging.info(f"loading file: {filename}")
|
39 |
+
try:
|
40 |
+
if file_type == ".pdf":
|
41 |
+
logging.debug("Loading PDF...")
|
42 |
+
try:
|
43 |
+
from modules.pdf_func import parse_pdf
|
44 |
+
from modules.config import advance_docs
|
45 |
+
|
46 |
+
two_column = advance_docs["pdf"].get("two_column", False)
|
47 |
+
pdftext = parse_pdf(filepath, two_column).text
|
48 |
+
except:
|
49 |
+
pdftext = ""
|
50 |
+
with open(filepath, "rb", encoding="utf-8") as pdfFileObj:
|
51 |
+
pdfReader = PyPDF2.PdfReader(pdfFileObj)
|
52 |
+
for page in tqdm(pdfReader.pages):
|
53 |
+
pdftext += page.extract_text()
|
54 |
+
texts = [Document(page_content=pdftext, metadata={"source": filepath})]
|
55 |
+
elif file_type == ".docx":
|
56 |
+
logging.debug("Loading Word...")
|
57 |
+
from langchain.document_loaders import UnstructuredWordDocumentLoader
|
58 |
+
loader = UnstructuredWordDocumentLoader(filepath)
|
59 |
+
texts = loader.load()
|
60 |
+
elif file_type == ".pptx":
|
61 |
+
logging.debug("Loading PowerPoint...")
|
62 |
+
from langchain.document_loaders import UnstructuredPowerPointLoader
|
63 |
+
loader = UnstructuredPowerPointLoader(filepath)
|
64 |
+
texts = loader.load()
|
65 |
+
elif file_type == ".epub":
|
66 |
+
logging.debug("Loading EPUB...")
|
67 |
+
from langchain.document_loaders import UnstructuredEPubLoader
|
68 |
+
loader = UnstructuredEPubLoader(filepath)
|
69 |
+
texts = loader.load()
|
70 |
+
elif file_type == ".xlsx":
|
71 |
+
logging.debug("Loading Excel...")
|
72 |
+
text_list = excel_to_string(filepath)
|
73 |
+
texts = []
|
74 |
+
for elem in text_list:
|
75 |
+
texts.append(Document(page_content=elem, metadata={"source": filepath}))
|
76 |
+
else:
|
77 |
+
logging.debug("Loading text file...")
|
78 |
+
from langchain.document_loaders import TextLoader
|
79 |
+
loader = TextLoader(filepath, "utf8")
|
80 |
+
texts = loader.load()
|
81 |
+
except Exception as e:
|
82 |
+
import traceback
|
83 |
+
logging.error(f"Error loading file: {filename}")
|
84 |
+
traceback.print_exc()
|
85 |
+
|
86 |
+
texts = text_splitter.split_documents(texts)
|
87 |
+
documents.extend(texts)
|
88 |
+
logging.debug("Documents loaded.")
|
89 |
+
return documents
|
90 |
+
|
91 |
+
|
92 |
+
def construct_index(
|
93 |
+
api_key,
|
94 |
+
file_src,
|
95 |
+
max_input_size=4096,
|
96 |
+
num_outputs=5,
|
97 |
+
max_chunk_overlap=20,
|
98 |
+
chunk_size_limit=600,
|
99 |
+
embedding_limit=None,
|
100 |
+
separator=" ",
|
101 |
+
):
|
102 |
+
from langchain.chat_models import ChatOpenAI
|
103 |
+
from langchain.vectorstores import FAISS
|
104 |
+
|
105 |
+
if api_key:
|
106 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
107 |
+
else:
|
108 |
+
# 由于一个依赖的愚蠢的设计,这里必须要有一个API KEY
|
109 |
+
os.environ["OPENAI_API_KEY"] = "sk-xxxxxxx"
|
110 |
+
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
|
111 |
+
embedding_limit = None if embedding_limit == 0 else embedding_limit
|
112 |
+
separator = " " if separator == "" else separator
|
113 |
+
|
114 |
+
index_name = get_index_name(file_src)
|
115 |
+
index_path = f"./index/{index_name}"
|
116 |
+
if local_embedding:
|
117 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
118 |
+
embeddings = HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2")
|
119 |
+
else:
|
120 |
+
from langchain.embeddings import OpenAIEmbeddings
|
121 |
+
embeddings = OpenAIEmbeddings(openai_api_base=os.environ.get("OPENAI_API_BASE", None), openai_api_key=os.environ.get("OPENAI_EMBEDDING_API_KEY", api_key))
|
122 |
+
if os.path.exists(index_path):
|
123 |
+
logging.info("找到了缓存的索引文件,加载中……")
|
124 |
+
return FAISS.load_local(index_path, embeddings)
|
125 |
+
else:
|
126 |
+
try:
|
127 |
+
documents = get_documents(file_src)
|
128 |
+
logging.info("构建索引中……")
|
129 |
+
with retrieve_proxy():
|
130 |
+
index = FAISS.from_documents(documents, embeddings)
|
131 |
+
logging.debug("索引构建完成!")
|
132 |
+
os.makedirs("./index", exist_ok=True)
|
133 |
+
index.save_local(index_path)
|
134 |
+
logging.debug("索引已保存至本地!")
|
135 |
+
return index
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
import traceback
|
139 |
+
logging.error("索引构建失败!%s", e)
|
140 |
+
traceback.print_exc()
|
141 |
+
return None
|
modules/models/ChuanhuAgent.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains.summarize import load_summarize_chain
|
2 |
+
from langchain import PromptTemplate, LLMChain
|
3 |
+
from langchain.chat_models import ChatOpenAI
|
4 |
+
from langchain.prompts import PromptTemplate
|
5 |
+
from langchain.text_splitter import TokenTextSplitter
|
6 |
+
from langchain.embeddings import OpenAIEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.agents import load_tools
|
10 |
+
from langchain.agents import initialize_agent
|
11 |
+
from langchain.agents import AgentType
|
12 |
+
from langchain.docstore.document import Document
|
13 |
+
from langchain.tools import BaseTool, StructuredTool, Tool, tool
|
14 |
+
from langchain.callbacks.stdout import StdOutCallbackHandler
|
15 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
16 |
+
from langchain.callbacks.manager import BaseCallbackManager
|
17 |
+
from duckduckgo_search import DDGS
|
18 |
+
from itertools import islice
|
19 |
+
|
20 |
+
from typing import Any, Dict, List, Optional, Union
|
21 |
+
|
22 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
23 |
+
from langchain.input import print_text
|
24 |
+
from langchain.schema import AgentAction, AgentFinish, LLMResult
|
25 |
+
|
26 |
+
from pydantic import BaseModel, Field
|
27 |
+
|
28 |
+
import requests
|
29 |
+
from bs4 import BeautifulSoup
|
30 |
+
from threading import Thread, Condition
|
31 |
+
from collections import deque
|
32 |
+
|
33 |
+
from .base_model import BaseLLMModel, CallbackToIterator, ChuanhuCallbackHandler
|
34 |
+
from ..config import default_chuanhu_assistant_model
|
35 |
+
from ..presets import SUMMARIZE_PROMPT, i18n
|
36 |
+
from ..index_func import construct_index
|
37 |
+
|
38 |
+
from langchain.callbacks import get_openai_callback
|
39 |
+
import os
|
40 |
+
import gradio as gr
|
41 |
+
import logging
|
42 |
+
|
43 |
+
class GoogleSearchInput(BaseModel):
|
44 |
+
keywords: str = Field(description="keywords to search")
|
45 |
+
|
46 |
+
class WebBrowsingInput(BaseModel):
|
47 |
+
url: str = Field(description="URL of a webpage")
|
48 |
+
|
49 |
+
class WebAskingInput(BaseModel):
|
50 |
+
url: str = Field(description="URL of a webpage")
|
51 |
+
question: str = Field(description="Question that you want to know the answer to, based on the webpage's content.")
|
52 |
+
|
53 |
+
|
54 |
+
class ChuanhuAgent_Client(BaseLLMModel):
|
55 |
+
def __init__(self, model_name, openai_api_key, user_name="") -> None:
|
56 |
+
super().__init__(model_name=model_name, user=user_name)
|
57 |
+
self.text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
|
58 |
+
self.api_key = openai_api_key
|
59 |
+
self.llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name=default_chuanhu_assistant_model, openai_api_base=os.environ.get("OPENAI_API_BASE", None))
|
60 |
+
self.cheap_llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name="gpt-3.5-turbo", openai_api_base=os.environ.get("OPENAI_API_BASE", None))
|
61 |
+
PROMPT = PromptTemplate(template=SUMMARIZE_PROMPT, input_variables=["text"])
|
62 |
+
self.summarize_chain = load_summarize_chain(self.cheap_llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
|
63 |
+
self.index_summary = None
|
64 |
+
self.index = None
|
65 |
+
if "Pro" in self.model_name:
|
66 |
+
self.tools = load_tools(["google-search-results-json", "llm-math", "arxiv", "wikipedia", "wolfram-alpha"], llm=self.llm)
|
67 |
+
else:
|
68 |
+
self.tools = load_tools(["ddg-search", "llm-math", "arxiv", "wikipedia"], llm=self.llm)
|
69 |
+
self.tools.append(
|
70 |
+
Tool.from_function(
|
71 |
+
func=self.google_search_simple,
|
72 |
+
name="Google Search JSON",
|
73 |
+
description="useful when you need to search the web.",
|
74 |
+
args_schema=GoogleSearchInput
|
75 |
+
)
|
76 |
+
)
|
77 |
+
|
78 |
+
self.tools.append(
|
79 |
+
Tool.from_function(
|
80 |
+
func=self.summary_url,
|
81 |
+
name="Summary Webpage",
|
82 |
+
description="useful when you need to know the overall content of a webpage.",
|
83 |
+
args_schema=WebBrowsingInput
|
84 |
+
)
|
85 |
+
)
|
86 |
+
|
87 |
+
self.tools.append(
|
88 |
+
StructuredTool.from_function(
|
89 |
+
func=self.ask_url,
|
90 |
+
name="Ask Webpage",
|
91 |
+
description="useful when you need to ask detailed questions about a webpage.",
|
92 |
+
args_schema=WebAskingInput
|
93 |
+
)
|
94 |
+
)
|
95 |
+
|
96 |
+
def google_search_simple(self, query):
|
97 |
+
results = []
|
98 |
+
with DDGS() as ddgs:
|
99 |
+
ddgs_gen = ddgs.text("notes from a dead house", backend="lite")
|
100 |
+
for r in islice(ddgs_gen, 10):
|
101 |
+
results.append({
|
102 |
+
"title": r["title"],
|
103 |
+
"link": r["href"],
|
104 |
+
"snippet": r["body"]
|
105 |
+
})
|
106 |
+
return str(results)
|
107 |
+
|
108 |
+
def handle_file_upload(self, files, chatbot, language):
|
109 |
+
"""if the model accepts multi modal input, implement this function"""
|
110 |
+
status = gr.Markdown.update()
|
111 |
+
if files:
|
112 |
+
index = construct_index(self.api_key, file_src=files)
|
113 |
+
assert index is not None, "获取索引失败"
|
114 |
+
self.index = index
|
115 |
+
status = i18n("索引构建完成")
|
116 |
+
# Summarize the document
|
117 |
+
logging.info(i18n("生成内容总结中……"))
|
118 |
+
with get_openai_callback() as cb:
|
119 |
+
os.environ["OPENAI_API_KEY"] = self.api_key
|
120 |
+
from langchain.chains.summarize import load_summarize_chain
|
121 |
+
from langchain.prompts import PromptTemplate
|
122 |
+
from langchain.chat_models import ChatOpenAI
|
123 |
+
prompt_template = "Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN " + language + ":"
|
124 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
|
125 |
+
llm = ChatOpenAI()
|
126 |
+
chain = load_summarize_chain(llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
|
127 |
+
summary = chain({"input_documents": list(index.docstore.__dict__["_dict"].values())}, return_only_outputs=True)["output_text"]
|
128 |
+
logging.info(f"Summary: {summary}")
|
129 |
+
self.index_summary = summary
|
130 |
+
chatbot.append((f"Uploaded {len(files)} files", summary))
|
131 |
+
logging.info(cb)
|
132 |
+
return gr.Files.update(), chatbot, status
|
133 |
+
|
134 |
+
def query_index(self, query):
|
135 |
+
if self.index is not None:
|
136 |
+
retriever = self.index.as_retriever()
|
137 |
+
qa = RetrievalQA.from_chain_type(llm=self.llm, chain_type="stuff", retriever=retriever)
|
138 |
+
return qa.run(query)
|
139 |
+
else:
|
140 |
+
"Error during query."
|
141 |
+
|
142 |
+
def summary(self, text):
|
143 |
+
texts = Document(page_content=text)
|
144 |
+
texts = self.text_splitter.split_documents([texts])
|
145 |
+
return self.summarize_chain({"input_documents": texts}, return_only_outputs=True)["output_text"]
|
146 |
+
|
147 |
+
def fetch_url_content(self, url):
|
148 |
+
response = requests.get(url)
|
149 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
150 |
+
|
151 |
+
# 提取所有的文本
|
152 |
+
text = ''.join(s.getText() for s in soup.find_all('p'))
|
153 |
+
logging.info(f"Extracted text from {url}")
|
154 |
+
return text
|
155 |
+
|
156 |
+
def summary_url(self, url):
|
157 |
+
text = self.fetch_url_content(url)
|
158 |
+
if text == "":
|
159 |
+
return "URL unavailable."
|
160 |
+
text_summary = self.summary(text)
|
161 |
+
url_content = "webpage content summary:\n" + text_summary
|
162 |
+
|
163 |
+
return url_content
|
164 |
+
|
165 |
+
def ask_url(self, url, question):
|
166 |
+
text = self.fetch_url_content(url)
|
167 |
+
if text == "":
|
168 |
+
return "URL unavailable."
|
169 |
+
texts = Document(page_content=text)
|
170 |
+
texts = self.text_splitter.split_documents([texts])
|
171 |
+
# use embedding
|
172 |
+
embeddings = OpenAIEmbeddings(openai_api_key=self.api_key, openai_api_base=os.environ.get("OPENAI_API_BASE", None))
|
173 |
+
|
174 |
+
# create vectorstore
|
175 |
+
db = FAISS.from_documents(texts, embeddings)
|
176 |
+
retriever = db.as_retriever()
|
177 |
+
qa = RetrievalQA.from_chain_type(llm=self.cheap_llm, chain_type="stuff", retriever=retriever)
|
178 |
+
return qa.run(f"{question} Reply in 中文")
|
179 |
+
|
180 |
+
def get_answer_at_once(self):
|
181 |
+
question = self.history[-1]["content"]
|
182 |
+
# llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
|
183 |
+
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
|
184 |
+
reply = agent.run(input=f"{question} Reply in 简体中文")
|
185 |
+
return reply, -1
|
186 |
+
|
187 |
+
def get_answer_stream_iter(self):
|
188 |
+
question = self.history[-1]["content"]
|
189 |
+
it = CallbackToIterator()
|
190 |
+
manager = BaseCallbackManager(handlers=[ChuanhuCallbackHandler(it.callback)])
|
191 |
+
def thread_func():
|
192 |
+
tools = self.tools
|
193 |
+
if self.index is not None:
|
194 |
+
tools.append(
|
195 |
+
Tool.from_function(
|
196 |
+
func=self.query_index,
|
197 |
+
name="Query Knowledge Base",
|
198 |
+
description=f"useful when you need to know about: {self.index_summary}",
|
199 |
+
args_schema=WebBrowsingInput
|
200 |
+
)
|
201 |
+
)
|
202 |
+
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, callback_manager=manager)
|
203 |
+
try:
|
204 |
+
reply = agent.run(input=f"{question} Reply in 简体中文")
|
205 |
+
except Exception as e:
|
206 |
+
import traceback
|
207 |
+
traceback.print_exc()
|
208 |
+
reply = str(e)
|
209 |
+
it.callback(reply)
|
210 |
+
it.finish()
|
211 |
+
t = Thread(target=thread_func)
|
212 |
+
t.start()
|
213 |
+
partial_text = ""
|
214 |
+
for value in it:
|
215 |
+
partial_text += value
|
216 |
+
yield partial_text
|
modules/models/__pycache__/ChuanhuAgent.cpython-311.pyc
CHANGED
Binary files a/modules/models/__pycache__/ChuanhuAgent.cpython-311.pyc and b/modules/models/__pycache__/ChuanhuAgent.cpython-311.pyc differ
|
|
modules/models/__pycache__/ChuanhuAgent.cpython-39.pyc
CHANGED
Binary files a/modules/models/__pycache__/ChuanhuAgent.cpython-39.pyc and b/modules/models/__pycache__/ChuanhuAgent.cpython-39.pyc differ
|
|
modules/models/__pycache__/base_model.cpython-311.pyc
CHANGED
Binary files a/modules/models/__pycache__/base_model.cpython-311.pyc and b/modules/models/__pycache__/base_model.cpython-311.pyc differ
|
|
modules/models/__pycache__/base_model.cpython-39.pyc
CHANGED
Binary files a/modules/models/__pycache__/base_model.cpython-39.pyc and b/modules/models/__pycache__/base_model.cpython-39.pyc differ
|
|
modules/models/__pycache__/minimax.cpython-39.pyc
ADDED
Binary file (4.35 kB). View file
|
|
modules/models/__pycache__/models.cpython-311.pyc
CHANGED
Binary files a/modules/models/__pycache__/models.cpython-311.pyc and b/modules/models/__pycache__/models.cpython-311.pyc differ
|
|
modules/models/__pycache__/models.cpython-39.pyc
CHANGED
Binary files a/modules/models/__pycache__/models.cpython-39.pyc and b/modules/models/__pycache__/models.cpython-39.pyc differ
|
|
modules/models/base_model.py
CHANGED
@@ -13,17 +13,110 @@ import pathlib
|
|
13 |
|
14 |
from tqdm import tqdm
|
15 |
import colorama
|
16 |
-
from duckduckgo_search import
|
|
|
17 |
import asyncio
|
18 |
import aiohttp
|
19 |
from enum import Enum
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
from ..presets import *
|
22 |
-
from ..
|
23 |
from ..utils import *
|
24 |
from .. import shared
|
25 |
from ..config import retrieve_proxy
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
class ModelType(Enum):
|
29 |
Unknown = -1
|
@@ -34,6 +127,8 @@ class ModelType(Enum):
|
|
34 |
StableLM = 4
|
35 |
MOSS = 5
|
36 |
YuanAI = 6
|
|
|
|
|
37 |
|
38 |
@classmethod
|
39 |
def get_type(cls, model_name: str):
|
@@ -53,6 +148,10 @@ class ModelType(Enum):
|
|
53 |
model_type = ModelType.MOSS
|
54 |
elif "yuanai" in model_name_lower:
|
55 |
model_type = ModelType.YuanAI
|
|
|
|
|
|
|
|
|
56 |
else:
|
57 |
model_type = ModelType.Unknown
|
58 |
return model_type
|
@@ -146,6 +245,8 @@ class BaseLLMModel:
|
|
146 |
|
147 |
stream_iter = self.get_answer_stream_iter()
|
148 |
|
|
|
|
|
149 |
for partial_text in stream_iter:
|
150 |
chatbot[-1] = (chatbot[-1][0], partial_text + display_append)
|
151 |
self.all_token_counts[-1] += 1
|
@@ -178,67 +279,54 @@ class BaseLLMModel:
|
|
178 |
status_text = self.token_message()
|
179 |
return chatbot, status_text
|
180 |
|
181 |
-
def handle_file_upload(self, files, chatbot):
|
182 |
"""if the model accepts multi modal input, implement this function"""
|
183 |
status = gr.Markdown.update()
|
184 |
if files:
|
185 |
-
construct_index(self.api_key, file_src=files)
|
186 |
-
status = "索引构建完成"
|
187 |
return gr.Files.update(), chatbot, status
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
|
190 |
fake_inputs = None
|
191 |
display_append = []
|
192 |
limited_context = False
|
193 |
fake_inputs = real_inputs
|
194 |
if files:
|
195 |
-
from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery
|
196 |
-
from llama_index.indices.query.schema import QueryBundle
|
197 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
198 |
-
from langchain.
|
199 |
-
from llama_index import (
|
200 |
-
GPTSimpleVectorIndex,
|
201 |
-
ServiceContext,
|
202 |
-
LangchainEmbedding,
|
203 |
-
OpenAIEmbedding,
|
204 |
-
)
|
205 |
limited_context = True
|
206 |
msg = "加载索引中……"
|
207 |
logging.info(msg)
|
208 |
-
# yield chatbot + [(inputs, "")], msg
|
209 |
index = construct_index(self.api_key, file_src=files)
|
210 |
assert index is not None, "获取索引失败"
|
211 |
msg = "索引获取成功,生成回答中……"
|
212 |
logging.info(msg)
|
213 |
-
if local_embedding or self.model_type != ModelType.OpenAI:
|
214 |
-
embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2"))
|
215 |
-
else:
|
216 |
-
embed_model = OpenAIEmbedding()
|
217 |
-
# yield chatbot + [(inputs, "")], msg
|
218 |
with retrieve_proxy():
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
chunk_size_limit=600,
|
224 |
-
)
|
225 |
-
from llama_index import ServiceContext
|
226 |
-
|
227 |
-
service_context = ServiceContext.from_defaults(
|
228 |
-
prompt_helper=prompt_helper, embed_model=embed_model
|
229 |
-
)
|
230 |
-
query_object = GPTVectorStoreIndexQuery(
|
231 |
-
index.index_struct,
|
232 |
-
service_context=service_context,
|
233 |
-
similarity_top_k=5,
|
234 |
-
vector_store=index._vector_store,
|
235 |
-
docstore=index._docstore,
|
236 |
-
response_synthesizer=None
|
237 |
-
)
|
238 |
-
query_bundle = QueryBundle(real_inputs)
|
239 |
-
nodes = query_object.retrieve(query_bundle)
|
240 |
-
reference_results = [n.node.text for n in nodes]
|
241 |
-
reference_results = add_source_numbers(reference_results, use_source=False)
|
242 |
display_append = add_details(reference_results)
|
243 |
display_append = "\n\n" + "".join(display_append)
|
244 |
real_inputs = (
|
@@ -248,16 +336,19 @@ class BaseLLMModel:
|
|
248 |
.replace("{reply_language}", reply_language)
|
249 |
)
|
250 |
elif use_websearch:
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
253 |
reference_results = []
|
254 |
for idx, result in enumerate(search_results):
|
255 |
logging.debug(f"搜索结果{idx + 1}:{result}")
|
256 |
-
domain_name = urllib3.util.parse_url(result[
|
257 |
-
reference_results.append([result[
|
258 |
display_append.append(
|
259 |
# f"{idx+1}. [{domain_name}]({result['href']})\n"
|
260 |
-
f"<li><a href=\"{result['href']}\" target=\"_blank\">{
|
261 |
)
|
262 |
reference_results = add_source_numbers(reference_results)
|
263 |
display_append = "<ol>\n\n" + "".join(display_append) + "</ol>"
|
@@ -550,7 +641,7 @@ class BaseLLMModel:
|
|
550 |
history_file_path = os.path.join(HISTORY_DIR, user_name, filename)
|
551 |
else:
|
552 |
history_file_path = filename
|
553 |
-
with open(history_file_path, "r") as f:
|
554 |
json_s = json.load(f)
|
555 |
try:
|
556 |
if type(json_s["history"][0]) == str:
|
|
|
13 |
|
14 |
from tqdm import tqdm
|
15 |
import colorama
|
16 |
+
from duckduckgo_search import DDGS
|
17 |
+
from itertools import islice
|
18 |
import asyncio
|
19 |
import aiohttp
|
20 |
from enum import Enum
|
21 |
|
22 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
23 |
+
from langchain.callbacks.manager import BaseCallbackManager
|
24 |
+
|
25 |
+
from typing import Any, Dict, List, Optional, Union
|
26 |
+
|
27 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
28 |
+
from langchain.input import print_text
|
29 |
+
from langchain.schema import AgentAction, AgentFinish, LLMResult
|
30 |
+
from threading import Thread, Condition
|
31 |
+
from collections import deque
|
32 |
+
|
33 |
from ..presets import *
|
34 |
+
from ..index_func import *
|
35 |
from ..utils import *
|
36 |
from .. import shared
|
37 |
from ..config import retrieve_proxy
|
38 |
|
39 |
+
class CallbackToIterator:
|
40 |
+
def __init__(self):
|
41 |
+
self.queue = deque()
|
42 |
+
self.cond = Condition()
|
43 |
+
self.finished = False
|
44 |
+
|
45 |
+
def callback(self, result):
|
46 |
+
with self.cond:
|
47 |
+
self.queue.append(result)
|
48 |
+
self.cond.notify() # Wake up the generator.
|
49 |
+
|
50 |
+
def __iter__(self):
|
51 |
+
return self
|
52 |
+
|
53 |
+
def __next__(self):
|
54 |
+
with self.cond:
|
55 |
+
while not self.queue and not self.finished: # Wait for a value to be added to the queue.
|
56 |
+
self.cond.wait()
|
57 |
+
if not self.queue:
|
58 |
+
raise StopIteration()
|
59 |
+
return self.queue.popleft()
|
60 |
+
|
61 |
+
def finish(self):
|
62 |
+
with self.cond:
|
63 |
+
self.finished = True
|
64 |
+
self.cond.notify() # Wake up the generator if it's waiting.
|
65 |
+
|
66 |
+
def get_action_description(text):
|
67 |
+
match = re.search('```(.*?)```', text, re.S)
|
68 |
+
json_text = match.group(1)
|
69 |
+
# 把json转化为python字典
|
70 |
+
json_dict = json.loads(json_text)
|
71 |
+
# 提取'action'和'action_input'的值
|
72 |
+
action_name = json_dict['action']
|
73 |
+
action_input = json_dict['action_input']
|
74 |
+
if action_name != "Final Answer":
|
75 |
+
return f'<p style="font-size: smaller; color: gray;">{action_name}: {action_input}</p>'
|
76 |
+
else:
|
77 |
+
return ""
|
78 |
+
|
79 |
+
class ChuanhuCallbackHandler(BaseCallbackHandler):
|
80 |
+
|
81 |
+
def __init__(self, callback) -> None:
|
82 |
+
"""Initialize callback handler."""
|
83 |
+
self.callback = callback
|
84 |
+
|
85 |
+
def on_agent_action(
|
86 |
+
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
|
87 |
+
) -> Any:
|
88 |
+
self.callback(get_action_description(action.log))
|
89 |
+
|
90 |
+
def on_tool_end(
|
91 |
+
self,
|
92 |
+
output: str,
|
93 |
+
color: Optional[str] = None,
|
94 |
+
observation_prefix: Optional[str] = None,
|
95 |
+
llm_prefix: Optional[str] = None,
|
96 |
+
**kwargs: Any,
|
97 |
+
) -> None:
|
98 |
+
"""If not the final action, print out observation."""
|
99 |
+
# if observation_prefix is not None:
|
100 |
+
# self.callback(f"\n\n{observation_prefix}")
|
101 |
+
# self.callback(output)
|
102 |
+
# if llm_prefix is not None:
|
103 |
+
# self.callback(f"\n\n{llm_prefix}")
|
104 |
+
if observation_prefix is not None:
|
105 |
+
logging.info(observation_prefix)
|
106 |
+
self.callback(output)
|
107 |
+
if llm_prefix is not None:
|
108 |
+
logging.info(llm_prefix)
|
109 |
+
|
110 |
+
def on_agent_finish(
|
111 |
+
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
|
112 |
+
) -> None:
|
113 |
+
# self.callback(f"{finish.log}\n\n")
|
114 |
+
logging.info(finish.log)
|
115 |
+
|
116 |
+
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
117 |
+
"""Run on new LLM token. Only available when streaming is enabled."""
|
118 |
+
self.callback(token)
|
119 |
+
|
120 |
|
121 |
class ModelType(Enum):
|
122 |
Unknown = -1
|
|
|
127 |
StableLM = 4
|
128 |
MOSS = 5
|
129 |
YuanAI = 6
|
130 |
+
Minimax = 7
|
131 |
+
ChuanhuAgent = 8
|
132 |
|
133 |
@classmethod
|
134 |
def get_type(cls, model_name: str):
|
|
|
148 |
model_type = ModelType.MOSS
|
149 |
elif "yuanai" in model_name_lower:
|
150 |
model_type = ModelType.YuanAI
|
151 |
+
elif "minimax" in model_name_lower:
|
152 |
+
model_type = ModelType.Minimax
|
153 |
+
elif "川虎助理" in model_name_lower:
|
154 |
+
model_type = ModelType.ChuanhuAgent
|
155 |
else:
|
156 |
model_type = ModelType.Unknown
|
157 |
return model_type
|
|
|
245 |
|
246 |
stream_iter = self.get_answer_stream_iter()
|
247 |
|
248 |
+
if display_append:
|
249 |
+
display_append = "<hr>" +display_append
|
250 |
for partial_text in stream_iter:
|
251 |
chatbot[-1] = (chatbot[-1][0], partial_text + display_append)
|
252 |
self.all_token_counts[-1] += 1
|
|
|
279 |
status_text = self.token_message()
|
280 |
return chatbot, status_text
|
281 |
|
282 |
+
def handle_file_upload(self, files, chatbot, language):
|
283 |
"""if the model accepts multi modal input, implement this function"""
|
284 |
status = gr.Markdown.update()
|
285 |
if files:
|
286 |
+
index = construct_index(self.api_key, file_src=files)
|
287 |
+
status = i18n("索引构建完成")
|
288 |
return gr.Files.update(), chatbot, status
|
289 |
|
290 |
+
def summarize_index(self, files, chatbot, language):
|
291 |
+
status = gr.Markdown.update()
|
292 |
+
if files:
|
293 |
+
index = construct_index(self.api_key, file_src=files)
|
294 |
+
status = i18n("总结完成")
|
295 |
+
logging.info(i18n("生成内容总结中……"))
|
296 |
+
os.environ["OPENAI_API_KEY"] = self.api_key
|
297 |
+
from langchain.chains.summarize import load_summarize_chain
|
298 |
+
from langchain.prompts import PromptTemplate
|
299 |
+
from langchain.chat_models import ChatOpenAI
|
300 |
+
from langchain.callbacks import StdOutCallbackHandler
|
301 |
+
prompt_template = "Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN " + language + ":"
|
302 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
|
303 |
+
llm = ChatOpenAI()
|
304 |
+
chain = load_summarize_chain(llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
|
305 |
+
summary = chain({"input_documents": list(index.docstore.__dict__["_dict"].values())}, return_only_outputs=True)["output_text"]
|
306 |
+
print(i18n("总结") + f": {summary}")
|
307 |
+
chatbot.append([i18n("上传了")+str(len(files))+"个文件", summary])
|
308 |
+
return chatbot, status
|
309 |
+
|
310 |
def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
|
311 |
fake_inputs = None
|
312 |
display_append = []
|
313 |
limited_context = False
|
314 |
fake_inputs = real_inputs
|
315 |
if files:
|
|
|
|
|
316 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
317 |
+
from langchain.vectorstores.base import VectorStoreRetriever
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
limited_context = True
|
319 |
msg = "加载索引中……"
|
320 |
logging.info(msg)
|
|
|
321 |
index = construct_index(self.api_key, file_src=files)
|
322 |
assert index is not None, "获取索引失败"
|
323 |
msg = "索引获取成功,生成回答中……"
|
324 |
logging.info(msg)
|
|
|
|
|
|
|
|
|
|
|
325 |
with retrieve_proxy():
|
326 |
+
retriever = VectorStoreRetriever(vectorstore=index, search_type="similarity_score_threshold",search_kwargs={"k":6, "score_threshold": 0.5})
|
327 |
+
relevant_documents = retriever.get_relevant_documents(real_inputs)
|
328 |
+
reference_results = [[d.page_content.strip("�"), os.path.basename(d.metadata["source"])] for d in relevant_documents]
|
329 |
+
reference_results = add_source_numbers(reference_results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
display_append = add_details(reference_results)
|
331 |
display_append = "\n\n" + "".join(display_append)
|
332 |
real_inputs = (
|
|
|
336 |
.replace("{reply_language}", reply_language)
|
337 |
)
|
338 |
elif use_websearch:
|
339 |
+
search_results = []
|
340 |
+
with DDGS() as ddgs:
|
341 |
+
ddgs_gen = ddgs.text(real_inputs, backend="lite")
|
342 |
+
for r in islice(ddgs_gen, 10):
|
343 |
+
search_results.append(r)
|
344 |
reference_results = []
|
345 |
for idx, result in enumerate(search_results):
|
346 |
logging.debug(f"搜索结果{idx + 1}:{result}")
|
347 |
+
domain_name = urllib3.util.parse_url(result['href']).host
|
348 |
+
reference_results.append([result['body'], result['href']])
|
349 |
display_append.append(
|
350 |
# f"{idx+1}. [{domain_name}]({result['href']})\n"
|
351 |
+
f"<li><a href=\"{result['href']}\" target=\"_blank\">{result['title']}</a></li>\n"
|
352 |
)
|
353 |
reference_results = add_source_numbers(reference_results)
|
354 |
display_append = "<ol>\n\n" + "".join(display_append) + "</ol>"
|
|
|
641 |
history_file_path = os.path.join(HISTORY_DIR, user_name, filename)
|
642 |
else:
|
643 |
history_file_path = filename
|
644 |
+
with open(history_file_path, "r", encoding="utf-8") as f:
|
645 |
json_s = json.load(f)
|
646 |
try:
|
647 |
if type(json_s["history"][0]) == str:
|
modules/models/minimax.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import colorama
|
5 |
+
import requests
|
6 |
+
import logging
|
7 |
+
|
8 |
+
from modules.models.base_model import BaseLLMModel
|
9 |
+
from modules.presets import STANDARD_ERROR_MSG, GENERAL_ERROR_MSG, TIMEOUT_STREAMING, TIMEOUT_ALL, i18n
|
10 |
+
|
11 |
+
group_id = os.environ.get("MINIMAX_GROUP_ID", "")
|
12 |
+
|
13 |
+
|
14 |
+
class MiniMax_Client(BaseLLMModel):
|
15 |
+
"""
|
16 |
+
MiniMax Client
|
17 |
+
接口文档见 https://api.minimax.chat/document/guides/chat
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, model_name, api_key, user_name="", system_prompt=None):
|
21 |
+
super().__init__(model_name=model_name, user=user_name)
|
22 |
+
self.url = f'https://api.minimax.chat/v1/text/chatcompletion?GroupId={group_id}'
|
23 |
+
self.history = []
|
24 |
+
self.api_key = api_key
|
25 |
+
self.system_prompt = system_prompt
|
26 |
+
self.headers = {
|
27 |
+
"Authorization": f"Bearer {api_key}",
|
28 |
+
"Content-Type": "application/json"
|
29 |
+
}
|
30 |
+
|
31 |
+
def get_answer_at_once(self):
|
32 |
+
# minimax temperature is (0,1] and base model temperature is [0,2], and yuan 0.9 == base 1 so need to convert
|
33 |
+
temperature = self.temperature * 0.9 if self.temperature <= 1 else 0.9 + (self.temperature - 1) / 10
|
34 |
+
|
35 |
+
request_body = {
|
36 |
+
"model": self.model_name.replace('minimax-', ''),
|
37 |
+
"temperature": temperature,
|
38 |
+
"skip_info_mask": True,
|
39 |
+
'messages': [{"sender_type": "USER", "text": self.history[-1]['content']}]
|
40 |
+
}
|
41 |
+
if self.n_choices:
|
42 |
+
request_body['beam_width'] = self.n_choices
|
43 |
+
if self.system_prompt:
|
44 |
+
request_body['prompt'] = self.system_prompt
|
45 |
+
if self.max_generation_token:
|
46 |
+
request_body['tokens_to_generate'] = self.max_generation_token
|
47 |
+
if self.top_p:
|
48 |
+
request_body['top_p'] = self.top_p
|
49 |
+
|
50 |
+
response = requests.post(self.url, headers=self.headers, json=request_body)
|
51 |
+
|
52 |
+
res = response.json()
|
53 |
+
answer = res['reply']
|
54 |
+
total_token_count = res["usage"]["total_tokens"]
|
55 |
+
return answer, total_token_count
|
56 |
+
|
57 |
+
def get_answer_stream_iter(self):
|
58 |
+
response = self._get_response(stream=True)
|
59 |
+
if response is not None:
|
60 |
+
iter = self._decode_chat_response(response)
|
61 |
+
partial_text = ""
|
62 |
+
for i in iter:
|
63 |
+
partial_text += i
|
64 |
+
yield partial_text
|
65 |
+
else:
|
66 |
+
yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG
|
67 |
+
|
68 |
+
def _get_response(self, stream=False):
|
69 |
+
minimax_api_key = self.api_key
|
70 |
+
history = self.history
|
71 |
+
logging.debug(colorama.Fore.YELLOW +
|
72 |
+
f"{history}" + colorama.Fore.RESET)
|
73 |
+
headers = {
|
74 |
+
"Content-Type": "application/json",
|
75 |
+
"Authorization": f"Bearer {minimax_api_key}",
|
76 |
+
}
|
77 |
+
|
78 |
+
temperature = self.temperature * 0.9 if self.temperature <= 1 else 0.9 + (self.temperature - 1) / 10
|
79 |
+
|
80 |
+
messages = []
|
81 |
+
for msg in self.history:
|
82 |
+
if msg['role'] == 'user':
|
83 |
+
messages.append({"sender_type": "USER", "text": msg['content']})
|
84 |
+
else:
|
85 |
+
messages.append({"sender_type": "BOT", "text": msg['content']})
|
86 |
+
|
87 |
+
request_body = {
|
88 |
+
"model": self.model_name.replace('minimax-', ''),
|
89 |
+
"temperature": temperature,
|
90 |
+
"skip_info_mask": True,
|
91 |
+
'messages': messages
|
92 |
+
}
|
93 |
+
if self.n_choices:
|
94 |
+
request_body['beam_width'] = self.n_choices
|
95 |
+
if self.system_prompt:
|
96 |
+
lines = self.system_prompt.splitlines()
|
97 |
+
if lines[0].find(":") != -1 and len(lines[0]) < 20:
|
98 |
+
request_body["role_meta"] = {
|
99 |
+
"user_name": lines[0].split(":")[0],
|
100 |
+
"bot_name": lines[0].split(":")[1]
|
101 |
+
}
|
102 |
+
lines.pop()
|
103 |
+
request_body["prompt"] = "\n".join(lines)
|
104 |
+
if self.max_generation_token:
|
105 |
+
request_body['tokens_to_generate'] = self.max_generation_token
|
106 |
+
else:
|
107 |
+
request_body['tokens_to_generate'] = 512
|
108 |
+
if self.top_p:
|
109 |
+
request_body['top_p'] = self.top_p
|
110 |
+
|
111 |
+
if stream:
|
112 |
+
timeout = TIMEOUT_STREAMING
|
113 |
+
request_body['stream'] = True
|
114 |
+
request_body['use_standard_sse'] = True
|
115 |
+
else:
|
116 |
+
timeout = TIMEOUT_ALL
|
117 |
+
try:
|
118 |
+
response = requests.post(
|
119 |
+
self.url,
|
120 |
+
headers=headers,
|
121 |
+
json=request_body,
|
122 |
+
stream=stream,
|
123 |
+
timeout=timeout,
|
124 |
+
)
|
125 |
+
except:
|
126 |
+
return None
|
127 |
+
|
128 |
+
return response
|
129 |
+
|
130 |
+
def _decode_chat_response(self, response):
|
131 |
+
error_msg = ""
|
132 |
+
for chunk in response.iter_lines():
|
133 |
+
if chunk:
|
134 |
+
chunk = chunk.decode()
|
135 |
+
chunk_length = len(chunk)
|
136 |
+
print(chunk)
|
137 |
+
try:
|
138 |
+
chunk = json.loads(chunk[6:])
|
139 |
+
except json.JSONDecodeError:
|
140 |
+
print(i18n("JSON解析错误,��到的内容: ") + f"{chunk}")
|
141 |
+
error_msg += chunk
|
142 |
+
continue
|
143 |
+
if chunk_length > 6 and "delta" in chunk["choices"][0]:
|
144 |
+
if "finish_reason" in chunk["choices"][0] and chunk["choices"][0]["finish_reason"] == "stop":
|
145 |
+
self.all_token_counts.append(chunk["usage"]["total_tokens"] - sum(self.all_token_counts))
|
146 |
+
break
|
147 |
+
try:
|
148 |
+
yield chunk["choices"][0]["delta"]
|
149 |
+
except Exception as e:
|
150 |
+
logging.error(f"Error: {e}")
|
151 |
+
continue
|
152 |
+
if error_msg:
|
153 |
+
try:
|
154 |
+
error_msg = json.loads(error_msg)
|
155 |
+
if 'base_resp' in error_msg:
|
156 |
+
status_code = error_msg['base_resp']['status_code']
|
157 |
+
status_msg = error_msg['base_resp']['status_msg']
|
158 |
+
raise Exception(f"{status_code} - {status_msg}")
|
159 |
+
except json.JSONDecodeError:
|
160 |
+
pass
|
161 |
+
raise Exception(error_msg)
|
modules/models/models.py
CHANGED
@@ -15,14 +15,13 @@ from PIL import Image
|
|
15 |
|
16 |
from tqdm import tqdm
|
17 |
import colorama
|
18 |
-
from duckduckgo_search import ddg
|
19 |
import asyncio
|
20 |
import aiohttp
|
21 |
from enum import Enum
|
22 |
import uuid
|
23 |
|
24 |
from ..presets import *
|
25 |
-
from ..
|
26 |
from ..utils import *
|
27 |
from .. import shared
|
28 |
from ..config import retrieve_proxy, usage_limit
|
@@ -339,7 +338,7 @@ class LLaMA_Client(BaseLLMModel):
|
|
339 |
pipeline_args = InferencerArguments(
|
340 |
local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
341 |
|
342 |
-
with open(pipeline_args.deepspeed, "r") as f:
|
343 |
ds_config = json.load(f)
|
344 |
LLAMA_MODEL = AutoModel.get_model(
|
345 |
model_args,
|
@@ -494,7 +493,7 @@ class XMChat(BaseLLMModel):
|
|
494 |
limited_context = False
|
495 |
return limited_context, fake_inputs, display_append, real_inputs, chatbot
|
496 |
|
497 |
-
def handle_file_upload(self, files, chatbot):
|
498 |
"""if the model accepts multi modal input, implement this function"""
|
499 |
if files:
|
500 |
for file in files:
|
@@ -557,6 +556,7 @@ def get_model(
|
|
557 |
config.local_embedding = True
|
558 |
# del current_model.model
|
559 |
model = None
|
|
|
560 |
try:
|
561 |
if model_type == ModelType.OpenAI:
|
562 |
logging.info(f"正在加载OpenAI模型: {model_name}")
|
@@ -602,10 +602,17 @@ def get_model(
|
|
602 |
elif model_type == ModelType.YuanAI:
|
603 |
from .inspurai import Yuan_Client
|
604 |
model = Yuan_Client(model_name, api_key=access_key, user_name=user_name, system_prompt=system_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
605 |
elif model_type == ModelType.Unknown:
|
606 |
raise ValueError(f"未知模型: {model_name}")
|
607 |
logging.info(msg)
|
608 |
-
chatbot = gr.Chatbot.update(label=model_name)
|
609 |
except Exception as e:
|
610 |
logging.error(e)
|
611 |
msg = f"{STANDARD_ERROR_MSG}: {e}"
|
@@ -616,7 +623,7 @@ def get_model(
|
|
616 |
|
617 |
|
618 |
if __name__ == "__main__":
|
619 |
-
with open("config.json", "r") as f:
|
620 |
openai_api_key = cjson.load(f)["openai_api_key"]
|
621 |
# set logging level to debug
|
622 |
logging.basicConfig(level=logging.DEBUG)
|
|
|
15 |
|
16 |
from tqdm import tqdm
|
17 |
import colorama
|
|
|
18 |
import asyncio
|
19 |
import aiohttp
|
20 |
from enum import Enum
|
21 |
import uuid
|
22 |
|
23 |
from ..presets import *
|
24 |
+
from ..index_func import *
|
25 |
from ..utils import *
|
26 |
from .. import shared
|
27 |
from ..config import retrieve_proxy, usage_limit
|
|
|
338 |
pipeline_args = InferencerArguments(
|
339 |
local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
340 |
|
341 |
+
with open(pipeline_args.deepspeed, "r", encoding="utf-8") as f:
|
342 |
ds_config = json.load(f)
|
343 |
LLAMA_MODEL = AutoModel.get_model(
|
344 |
model_args,
|
|
|
493 |
limited_context = False
|
494 |
return limited_context, fake_inputs, display_append, real_inputs, chatbot
|
495 |
|
496 |
+
def handle_file_upload(self, files, chatbot, language):
|
497 |
"""if the model accepts multi modal input, implement this function"""
|
498 |
if files:
|
499 |
for file in files:
|
|
|
556 |
config.local_embedding = True
|
557 |
# del current_model.model
|
558 |
model = None
|
559 |
+
chatbot = gr.Chatbot.update(label=model_name)
|
560 |
try:
|
561 |
if model_type == ModelType.OpenAI:
|
562 |
logging.info(f"正在加载OpenAI模型: {model_name}")
|
|
|
602 |
elif model_type == ModelType.YuanAI:
|
603 |
from .inspurai import Yuan_Client
|
604 |
model = Yuan_Client(model_name, api_key=access_key, user_name=user_name, system_prompt=system_prompt)
|
605 |
+
elif model_type == ModelType.Minimax:
|
606 |
+
from .minimax import MiniMax_Client
|
607 |
+
if os.environ.get("MINIMAX_API_KEY") != "":
|
608 |
+
access_key = os.environ.get("MINIMAX_API_KEY")
|
609 |
+
model = MiniMax_Client(model_name, api_key=access_key, user_name=user_name, system_prompt=system_prompt)
|
610 |
+
elif model_type == ModelType.ChuanhuAgent:
|
611 |
+
from .ChuanhuAgent import ChuanhuAgent_Client
|
612 |
+
model = ChuanhuAgent_Client(model_name, access_key, user_name=user_name)
|
613 |
elif model_type == ModelType.Unknown:
|
614 |
raise ValueError(f"未知模型: {model_name}")
|
615 |
logging.info(msg)
|
|
|
616 |
except Exception as e:
|
617 |
logging.error(e)
|
618 |
msg = f"{STANDARD_ERROR_MSG}: {e}"
|
|
|
623 |
|
624 |
|
625 |
if __name__ == "__main__":
|
626 |
+
with open("config.json", "r", encoding="utf-8") as f:
|
627 |
openai_api_key = cjson.load(f)["openai_api_key"]
|
628 |
# set logging level to debug
|
629 |
logging.basicConfig(level=logging.DEBUG)
|
modules/overwrites.py
CHANGED
@@ -1,23 +1,13 @@
|
|
1 |
from __future__ import annotations
|
2 |
import logging
|
3 |
|
4 |
-
from llama_index import Prompt
|
5 |
from typing import List, Tuple
|
6 |
-
import mdtex2html
|
7 |
from gradio_client import utils as client_utils
|
|
|
|
|
8 |
|
9 |
from modules.presets import *
|
10 |
-
from modules.
|
11 |
-
from modules.config import render_latex
|
12 |
-
|
13 |
-
def compact_text_chunks(self, prompt: Prompt, text_chunks: List[str]) -> List[str]:
|
14 |
-
logging.debug("Compacting text chunks...🚀🚀🚀")
|
15 |
-
combined_str = [c.strip() for c in text_chunks if c.strip()]
|
16 |
-
combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)]
|
17 |
-
combined_str = "\n\n".join(combined_str)
|
18 |
-
# resplit based on self.max_chunk_overlap
|
19 |
-
text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1)
|
20 |
-
return text_splitter.split_text(combined_str)
|
21 |
|
22 |
|
23 |
def postprocess(
|
@@ -50,14 +40,18 @@ def postprocess(
|
|
50 |
return processed_messages
|
51 |
|
52 |
def postprocess_chat_messages(
|
53 |
-
self, chat_message: str |
|
54 |
-
) -> str |
|
55 |
if chat_message is None:
|
56 |
return None
|
57 |
elif isinstance(chat_message, (tuple, list)):
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
59 |
mime_type = client_utils.get_mimetype(filepath)
|
60 |
-
filepath = self.make_temp_copy_if_needed(filepath)
|
61 |
return {
|
62 |
"name": filepath,
|
63 |
"mime_type": mime_type,
|
@@ -66,12 +60,13 @@ def postprocess_chat_messages(
|
|
66 |
"is_file": True,
|
67 |
}
|
68 |
elif isinstance(chat_message, str):
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
return chat_message
|
76 |
else:
|
77 |
raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
|
@@ -85,11 +80,8 @@ with open("./assets/custom.js", "r", encoding="utf-8") as f, \
|
|
85 |
def reload_javascript():
|
86 |
print("Reloading javascript...")
|
87 |
js = f'<script>{customJS}</script><script async>{externalScripts}</script>'
|
88 |
-
if render_latex:
|
89 |
-
|
90 |
-
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-MML-AM_CHTML"></script>
|
91 |
-
<script type="text/x-mathjax-config">MathJax.Hub.Config({skipStartupTypeset: false, tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']],displayMath: [['$$','$$'], ['\\[','\\]']]}});</script>
|
92 |
-
"""
|
93 |
def template_response(*args, **kwargs):
|
94 |
res = GradioTemplateResponseOriginal(*args, **kwargs)
|
95 |
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
|
|
|
1 |
from __future__ import annotations
|
2 |
import logging
|
3 |
|
|
|
4 |
from typing import List, Tuple
|
|
|
5 |
from gradio_client import utils as client_utils
|
6 |
+
from gradio import utils
|
7 |
+
import inspect
|
8 |
|
9 |
from modules.presets import *
|
10 |
+
from modules.index_func import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
def postprocess(
|
|
|
40 |
return processed_messages
|
41 |
|
42 |
def postprocess_chat_messages(
|
43 |
+
self, chat_message: str | tuple | list | None, role: str
|
44 |
+
) -> str | dict | None:
|
45 |
if chat_message is None:
|
46 |
return None
|
47 |
elif isinstance(chat_message, (tuple, list)):
|
48 |
+
file_uri = chat_message[0]
|
49 |
+
if utils.validate_url(file_uri):
|
50 |
+
filepath = file_uri
|
51 |
+
else:
|
52 |
+
filepath = self.make_temp_copy_if_needed(file_uri)
|
53 |
+
|
54 |
mime_type = client_utils.get_mimetype(filepath)
|
|
|
55 |
return {
|
56 |
"name": filepath,
|
57 |
"mime_type": mime_type,
|
|
|
60 |
"is_file": True,
|
61 |
}
|
62 |
elif isinstance(chat_message, str):
|
63 |
+
# chat_message = inspect.cleandoc(chat_message)
|
64 |
+
# escape html spaces
|
65 |
+
# chat_message = chat_message.replace(" ", " ")
|
66 |
+
if role == "bot":
|
67 |
+
chat_message = convert_bot_before_marked(chat_message)
|
68 |
+
elif role == "user":
|
69 |
+
chat_message = convert_user_before_marked(chat_message)
|
70 |
return chat_message
|
71 |
else:
|
72 |
raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
|
|
|
80 |
def reload_javascript():
|
81 |
print("Reloading javascript...")
|
82 |
js = f'<script>{customJS}</script><script async>{externalScripts}</script>'
|
83 |
+
# if render_latex:
|
84 |
+
# js += """\"""
|
|
|
|
|
|
|
85 |
def template_response(*args, **kwargs):
|
86 |
res = GradioTemplateResponseOriginal(*args, **kwargs)
|
87 |
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
|
modules/pdf_func.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
from types import SimpleNamespace
|
2 |
import pdfplumber
|
3 |
import logging
|
4 |
-
from
|
5 |
|
6 |
def prepare_table_config(crop_page):
|
7 |
"""Prepare table查找边界, 要求page为原始page
|
8 |
-
|
9 |
From https://github.com/jsvine/pdfplumber/issues/242
|
10 |
"""
|
11 |
page = crop_page.root_page # root/parent
|
@@ -60,7 +60,7 @@ def get_title_with_cropped_page(first_page):
|
|
60 |
title_bottom = word.bottom
|
61 |
elif word.text == "Abstract": # 获取页面abstract
|
62 |
top = word.top
|
63 |
-
|
64 |
user_info = [i["text"] for i in extract_words(first_page.within_bbox((x0,title_bottom,x1,top)))]
|
65 |
# 裁剪掉上半部分, within_bbox: full_included; crop: partial_included
|
66 |
return title, user_info, first_page.within_bbox((x0,top,x1,bottom))
|
@@ -75,7 +75,7 @@ def get_column_cropped_pages(pages, two_column=True):
|
|
75 |
new_pages.append(right)
|
76 |
else:
|
77 |
new_pages.append(page)
|
78 |
-
|
79 |
return new_pages
|
80 |
|
81 |
def parse_pdf(filename, two_column = True):
|
@@ -94,7 +94,7 @@ def parse_pdf(filename, two_column = True):
|
|
94 |
name_top=name_top,
|
95 |
name_bottom=name_bottom,
|
96 |
record_chapter_name = True,
|
97 |
-
|
98 |
page_start=page_start,
|
99 |
page_stop=None,
|
100 |
|
@@ -114,7 +114,7 @@ def parse_pdf(filename, two_column = True):
|
|
114 |
if word.size >= 11: # 出现chapter name
|
115 |
if cur_chapter is None:
|
116 |
cur_chapter = create_chapter(page.page_number, word.top, word.bottom)
|
117 |
-
elif not cur_chapter.record_chapter_name or (cur_chapter.name_bottom != cur_chapter.name_bottom and cur_chapter.name_top != cur_chapter.name_top):
|
118 |
# 不再继续写chapter name
|
119 |
cur_chapter.page_stop = page.page_number # stop id
|
120 |
chapters.append(cur_chapter)
|
@@ -143,7 +143,7 @@ def parse_pdf(filename, two_column = True):
|
|
143 |
text += f"The {idx}th Chapter {chapter.name}: " + " ".join(chapter.text) + "\n"
|
144 |
|
145 |
logging.getLogger().setLevel(level)
|
146 |
-
return Document(
|
147 |
|
148 |
BASE_POINTS = """
|
149 |
1. Who are the authors?
|
|
|
1 |
from types import SimpleNamespace
|
2 |
import pdfplumber
|
3 |
import logging
|
4 |
+
from langchain.docstore.document import Document
|
5 |
|
6 |
def prepare_table_config(crop_page):
|
7 |
"""Prepare table查找边界, 要求page为原始page
|
8 |
+
|
9 |
From https://github.com/jsvine/pdfplumber/issues/242
|
10 |
"""
|
11 |
page = crop_page.root_page # root/parent
|
|
|
60 |
title_bottom = word.bottom
|
61 |
elif word.text == "Abstract": # 获取页面abstract
|
62 |
top = word.top
|
63 |
+
|
64 |
user_info = [i["text"] for i in extract_words(first_page.within_bbox((x0,title_bottom,x1,top)))]
|
65 |
# 裁剪掉上半部分, within_bbox: full_included; crop: partial_included
|
66 |
return title, user_info, first_page.within_bbox((x0,top,x1,bottom))
|
|
|
75 |
new_pages.append(right)
|
76 |
else:
|
77 |
new_pages.append(page)
|
78 |
+
|
79 |
return new_pages
|
80 |
|
81 |
def parse_pdf(filename, two_column = True):
|
|
|
94 |
name_top=name_top,
|
95 |
name_bottom=name_bottom,
|
96 |
record_chapter_name = True,
|
97 |
+
|
98 |
page_start=page_start,
|
99 |
page_stop=None,
|
100 |
|
|
|
114 |
if word.size >= 11: # 出现chapter name
|
115 |
if cur_chapter is None:
|
116 |
cur_chapter = create_chapter(page.page_number, word.top, word.bottom)
|
117 |
+
elif not cur_chapter.record_chapter_name or (cur_chapter.name_bottom != cur_chapter.name_bottom and cur_chapter.name_top != cur_chapter.name_top):
|
118 |
# 不再继续写chapter name
|
119 |
cur_chapter.page_stop = page.page_number # stop id
|
120 |
chapters.append(cur_chapter)
|
|
|
143 |
text += f"The {idx}th Chapter {chapter.name}: " + " ".join(chapter.text) + "\n"
|
144 |
|
145 |
logging.getLogger().setLevel(level)
|
146 |
+
return Document(page_content=text, metadata={"title": title})
|
147 |
|
148 |
BASE_POINTS = """
|
149 |
1. Who are the authors?
|
modules/presets.py
CHANGED
@@ -46,32 +46,27 @@ CHUANHU_TITLE = i18n("川虎Chat 🚀")
|
|
46 |
|
47 |
CHUANHU_DESCRIPTION = i18n("由Bilibili [土川虎虎虎](https://space.bilibili.com/29125536)、[明昭MZhao](https://space.bilibili.com/24807452) 和 [Keldos](https://github.com/Keldos-Li) 开发<br />访问川虎Chat的 [GitHub项目](https://github.com/GaiZhenbiao/ChuanhuChatGPT) 下载最新版脚本")
|
48 |
|
49 |
-
FOOTER = """<div class="versions">{versions}</div>"""
|
50 |
-
|
51 |
-
APPEARANCE_SWITCHER = """
|
52 |
-
<div style="display: flex; justify-content: space-between;">
|
53 |
-
<span style="margin-top: 4px !important;">"""+ i18n("切换亮暗色主题") + """</span>
|
54 |
-
<span><label class="apSwitch" for="checkbox">
|
55 |
-
<input type="checkbox" id="checkbox">
|
56 |
-
<div class="apSlider"></div>
|
57 |
-
</label></span>
|
58 |
-
</div>
|
59 |
-
"""
|
60 |
-
|
61 |
-
SUMMARIZE_PROMPT = "你是谁?我们刚才聊了什么?" # 总结对话时的 prompt
|
62 |
|
63 |
ONLINE_MODELS = [
|
64 |
"gpt-3.5-turbo",
|
|
|
65 |
"gpt-3.5-turbo-0301",
|
|
|
66 |
"gpt-4",
|
67 |
"gpt-4-0314",
|
|
|
68 |
"gpt-4-32k",
|
69 |
"gpt-4-32k-0314",
|
|
|
|
|
|
|
70 |
"xmchat",
|
71 |
"yuanai-1.0-base_10B",
|
72 |
"yuanai-1.0-translate",
|
73 |
"yuanai-1.0-dialog",
|
74 |
"yuanai-1.0-rhythm_poems",
|
|
|
|
|
75 |
]
|
76 |
|
77 |
LOCAL_MODELS = [
|
@@ -103,11 +98,15 @@ for dir_name in os.listdir("models"):
|
|
103 |
|
104 |
MODEL_TOKEN_LIMIT = {
|
105 |
"gpt-3.5-turbo": 4096,
|
|
|
106 |
"gpt-3.5-turbo-0301": 4096,
|
|
|
107 |
"gpt-4": 8192,
|
108 |
"gpt-4-0314": 8192,
|
|
|
109 |
"gpt-4-32k": 32768,
|
110 |
-
"gpt-4-32k-0314": 32768
|
|
|
111 |
}
|
112 |
|
113 |
TOKEN_OFFSET = 1000 # 模型的token上限减去这个值,得到软上限。到达软上限之后,自动尝试减少token占用。
|
@@ -164,6 +163,12 @@ Reply in {reply_language}
|
|
164 |
If the context isn't useful, return the original answer.
|
165 |
"""
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
ALREADY_CONVERTED_MARK = "<!-- ALREADY CONVERTED BY PARSER. -->"
|
168 |
|
169 |
small_and_beautiful_theme = gr.themes.Soft(
|
@@ -230,4 +235,6 @@ small_and_beautiful_theme = gr.themes.Soft(
|
|
230 |
block_title_background_fill_dark="*primary_900",
|
231 |
block_label_background_fill_dark="*primary_900",
|
232 |
input_background_fill="#F6F6F6",
|
|
|
|
|
233 |
)
|
|
|
46 |
|
47 |
CHUANHU_DESCRIPTION = i18n("由Bilibili [土川虎虎虎](https://space.bilibili.com/29125536)、[明昭MZhao](https://space.bilibili.com/24807452) 和 [Keldos](https://github.com/Keldos-Li) 开发<br />访问川虎Chat的 [GitHub项目](https://github.com/GaiZhenbiao/ChuanhuChatGPT) 下载最新版脚本")
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
ONLINE_MODELS = [
|
51 |
"gpt-3.5-turbo",
|
52 |
+
"gpt-3.5-turbo-16k",
|
53 |
"gpt-3.5-turbo-0301",
|
54 |
+
"gpt-3.5-turbo-0613",
|
55 |
"gpt-4",
|
56 |
"gpt-4-0314",
|
57 |
+
"gpt-4-0613",
|
58 |
"gpt-4-32k",
|
59 |
"gpt-4-32k-0314",
|
60 |
+
"gpt-4-32k-0613",
|
61 |
+
"川虎助理",
|
62 |
+
"川虎助理 Pro",
|
63 |
"xmchat",
|
64 |
"yuanai-1.0-base_10B",
|
65 |
"yuanai-1.0-translate",
|
66 |
"yuanai-1.0-dialog",
|
67 |
"yuanai-1.0-rhythm_poems",
|
68 |
+
"minimax-abab4-chat",
|
69 |
+
"minimax-abab5-chat",
|
70 |
]
|
71 |
|
72 |
LOCAL_MODELS = [
|
|
|
98 |
|
99 |
MODEL_TOKEN_LIMIT = {
|
100 |
"gpt-3.5-turbo": 4096,
|
101 |
+
"gpt-3.5-turbo-16k": 16384,
|
102 |
"gpt-3.5-turbo-0301": 4096,
|
103 |
+
"gpt-3.5-turbo-0613": 4096,
|
104 |
"gpt-4": 8192,
|
105 |
"gpt-4-0314": 8192,
|
106 |
+
"gpt-4-0613": 8192,
|
107 |
"gpt-4-32k": 32768,
|
108 |
+
"gpt-4-32k-0314": 32768,
|
109 |
+
"gpt-4-32k-0613": 32768
|
110 |
}
|
111 |
|
112 |
TOKEN_OFFSET = 1000 # 模型的token上限减去这个值,得到软上限。到达软上限之后,自动尝试减少token占用。
|
|
|
163 |
If the context isn't useful, return the original answer.
|
164 |
"""
|
165 |
|
166 |
+
SUMMARIZE_PROMPT = """Write a concise summary of the following:
|
167 |
+
|
168 |
+
{text}
|
169 |
+
|
170 |
+
CONCISE SUMMARY IN 中文:"""
|
171 |
+
|
172 |
ALREADY_CONVERTED_MARK = "<!-- ALREADY CONVERTED BY PARSER. -->"
|
173 |
|
174 |
small_and_beautiful_theme = gr.themes.Soft(
|
|
|
235 |
block_title_background_fill_dark="*primary_900",
|
236 |
block_label_background_fill_dark="*primary_900",
|
237 |
input_background_fill="#F6F6F6",
|
238 |
+
chatbot_code_background_color="*neutral_950",
|
239 |
+
chatbot_code_background_color_dark="*neutral_950",
|
240 |
)
|
modules/shared.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from modules.presets import COMPLETION_URL, BALANCE_API_URL, USAGE_API_URL, API_HOST
|
2 |
import os
|
3 |
import queue
|
|
|
4 |
|
5 |
class State:
|
6 |
interrupted = False
|
@@ -15,23 +16,28 @@ class State:
|
|
15 |
def recover(self):
|
16 |
self.interrupted = False
|
17 |
|
18 |
-
def set_api_host(self, api_host):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def reset_api_host(self):
|
25 |
self.completion_url = COMPLETION_URL
|
26 |
self.balance_api_url = BALANCE_API_URL
|
27 |
self.usage_api_url = USAGE_API_URL
|
28 |
-
os.environ["OPENAI_API_BASE"] = f"https://{API_HOST}
|
29 |
return API_HOST
|
30 |
|
31 |
def reset_all(self):
|
32 |
self.interrupted = False
|
33 |
self.completion_url = COMPLETION_URL
|
34 |
-
|
35 |
def set_api_key_queue(self, api_key_list):
|
36 |
self.multi_api_key = True
|
37 |
self.api_key_queue = queue.Queue()
|
@@ -50,6 +56,9 @@ class State:
|
|
50 |
return ret
|
51 |
|
52 |
return wrapped
|
53 |
-
|
54 |
|
55 |
state = State()
|
|
|
|
|
|
|
|
1 |
from modules.presets import COMPLETION_URL, BALANCE_API_URL, USAGE_API_URL, API_HOST
|
2 |
import os
|
3 |
import queue
|
4 |
+
import openai
|
5 |
|
6 |
class State:
|
7 |
interrupted = False
|
|
|
16 |
def recover(self):
|
17 |
self.interrupted = False
|
18 |
|
19 |
+
def set_api_host(self, api_host: str):
|
20 |
+
api_host = api_host.rstrip("/")
|
21 |
+
if not api_host.startswith("http"):
|
22 |
+
api_host = f"https://{api_host}"
|
23 |
+
if api_host.endswith("/v1"):
|
24 |
+
api_host = api_host[:-3]
|
25 |
+
self.completion_url = f"{api_host}/v1/chat/completions"
|
26 |
+
self.balance_api_url = f"{api_host}/dashboard/billing/credit_grants"
|
27 |
+
self.usage_api_url = f"{api_host}/dashboard/billing/usage"
|
28 |
+
os.environ["OPENAI_API_BASE"] = api_host
|
29 |
|
30 |
def reset_api_host(self):
|
31 |
self.completion_url = COMPLETION_URL
|
32 |
self.balance_api_url = BALANCE_API_URL
|
33 |
self.usage_api_url = USAGE_API_URL
|
34 |
+
os.environ["OPENAI_API_BASE"] = f"https://{API_HOST}"
|
35 |
return API_HOST
|
36 |
|
37 |
def reset_all(self):
|
38 |
self.interrupted = False
|
39 |
self.completion_url = COMPLETION_URL
|
40 |
+
|
41 |
def set_api_key_queue(self, api_key_list):
|
42 |
self.multi_api_key = True
|
43 |
self.api_key_queue = queue.Queue()
|
|
|
56 |
return ret
|
57 |
|
58 |
return wrapped
|
59 |
+
|
60 |
|
61 |
state = State()
|
62 |
+
|
63 |
+
modules_path = os.path.dirname(os.path.realpath(__file__))
|
64 |
+
chuanhu_path = os.path.dirname(modules_path)
|
modules/utils.py
CHANGED
@@ -16,7 +16,6 @@ import subprocess
|
|
16 |
import gradio as gr
|
17 |
from pypinyin import lazy_pinyin
|
18 |
import tiktoken
|
19 |
-
import mdtex2html
|
20 |
from markdown import markdown
|
21 |
from pygments import highlight
|
22 |
from pygments.lexers import get_lexer_by_name
|
@@ -116,6 +115,9 @@ def set_single_turn(current_model, *args):
|
|
116 |
def handle_file_upload(current_model, *args):
|
117 |
return current_model.handle_file_upload(*args)
|
118 |
|
|
|
|
|
|
|
119 |
def like(current_model, *args):
|
120 |
return current_model.like(*args)
|
121 |
|
@@ -130,7 +132,7 @@ def count_token(message):
|
|
130 |
return length
|
131 |
|
132 |
|
133 |
-
def markdown_to_html_with_syntax_highlight(md_str):
|
134 |
def replacer(match):
|
135 |
lang = match.group(1) or "text"
|
136 |
code = match.group(2)
|
@@ -152,7 +154,7 @@ def markdown_to_html_with_syntax_highlight(md_str):
|
|
152 |
return html_str
|
153 |
|
154 |
|
155 |
-
def normalize_markdown(md_text: str) -> str:
|
156 |
lines = md_text.split("\n")
|
157 |
normalized_lines = []
|
158 |
inside_list = False
|
@@ -176,7 +178,7 @@ def normalize_markdown(md_text: str) -> str:
|
|
176 |
return "\n".join(normalized_lines)
|
177 |
|
178 |
|
179 |
-
def convert_mdtext(md_text):
|
180 |
code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL)
|
181 |
inline_code_pattern = re.compile(r"`(.*?)`", re.DOTALL)
|
182 |
code_blocks = code_block_pattern.findall(md_text)
|
@@ -200,15 +202,70 @@ def convert_mdtext(md_text):
|
|
200 |
output += ALREADY_CONVERTED_MARK
|
201 |
return output
|
202 |
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
return (
|
206 |
f'<p style="white-space:pre-wrap;">{html.escape(userinput)}</p>'
|
207 |
+ ALREADY_CONVERTED_MARK
|
208 |
)
|
209 |
|
210 |
|
211 |
-
def detect_converted_mark(userinput):
|
212 |
try:
|
213 |
if userinput.endswith(ALREADY_CONVERTED_MARK):
|
214 |
return True
|
@@ -218,7 +275,7 @@ def detect_converted_mark(userinput):
|
|
218 |
return True
|
219 |
|
220 |
|
221 |
-
def detect_language(code):
|
222 |
if code.startswith("\n"):
|
223 |
first_line = ""
|
224 |
else:
|
@@ -253,8 +310,8 @@ def save_file(filename, system, history, chatbot, user_name):
|
|
253 |
history_file_path = filename
|
254 |
else:
|
255 |
history_file_path = os.path.join(HISTORY_DIR, user_name, filename)
|
256 |
-
with open(history_file_path, "w") as f:
|
257 |
-
json.dump(json_s, f)
|
258 |
elif filename.endswith(".md"):
|
259 |
md_s = f"system: \n- {system} \n"
|
260 |
for data in history:
|
@@ -494,6 +551,13 @@ def versions_html():
|
|
494 |
<a style="text-decoration:none;color:inherit" href="https://github.com/GaiZhenbiao/ChuanhuChatGPT">ChuanhuChat</a>: {commit_info}
|
495 |
"""
|
496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
def add_source_numbers(lst, source_name = "Source", use_source = True):
|
498 |
if use_source:
|
499 |
return [f'[{idx+1}]\t "{item[0]}"\n{source_name}: {item[1]}' for idx, item in enumerate(lst)]
|
@@ -560,7 +624,7 @@ def toggle_like_btn_visibility(selected_model_name):
|
|
560 |
def new_auto_history_filename(dirname):
|
561 |
latest_file = get_latest_filepath(dirname)
|
562 |
if latest_file:
|
563 |
-
with open(os.path.join(dirname, latest_file), 'r') as f:
|
564 |
if len(f.read()) == 0:
|
565 |
return latest_file
|
566 |
now = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
|
|
|
16 |
import gradio as gr
|
17 |
from pypinyin import lazy_pinyin
|
18 |
import tiktoken
|
|
|
19 |
from markdown import markdown
|
20 |
from pygments import highlight
|
21 |
from pygments.lexers import get_lexer_by_name
|
|
|
115 |
def handle_file_upload(current_model, *args):
|
116 |
return current_model.handle_file_upload(*args)
|
117 |
|
118 |
+
def handle_summarize_index(current_model, *args):
|
119 |
+
return current_model.summarize_index(*args)
|
120 |
+
|
121 |
def like(current_model, *args):
|
122 |
return current_model.like(*args)
|
123 |
|
|
|
132 |
return length
|
133 |
|
134 |
|
135 |
+
def markdown_to_html_with_syntax_highlight(md_str): # deprecated
|
136 |
def replacer(match):
|
137 |
lang = match.group(1) or "text"
|
138 |
code = match.group(2)
|
|
|
154 |
return html_str
|
155 |
|
156 |
|
157 |
+
def normalize_markdown(md_text: str) -> str: # deprecated
|
158 |
lines = md_text.split("\n")
|
159 |
normalized_lines = []
|
160 |
inside_list = False
|
|
|
178 |
return "\n".join(normalized_lines)
|
179 |
|
180 |
|
181 |
+
def convert_mdtext(md_text): # deprecated
|
182 |
code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL)
|
183 |
inline_code_pattern = re.compile(r"`(.*?)`", re.DOTALL)
|
184 |
code_blocks = code_block_pattern.findall(md_text)
|
|
|
202 |
output += ALREADY_CONVERTED_MARK
|
203 |
return output
|
204 |
|
205 |
+
def convert_bot_before_marked(chat_message):
|
206 |
+
"""
|
207 |
+
注意不能给输出加缩进, 否则会被marked解析成代码块
|
208 |
+
"""
|
209 |
+
if '<div class="md-message">' in chat_message:
|
210 |
+
return chat_message
|
211 |
+
else:
|
212 |
+
code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL)
|
213 |
+
code_blocks = code_block_pattern.findall(chat_message)
|
214 |
+
non_code_parts = code_block_pattern.split(chat_message)[::2]
|
215 |
+
result = []
|
216 |
+
|
217 |
+
raw = f'<div class="raw-message hideM">{escape_markdown(chat_message)}</div>'
|
218 |
+
for non_code, code in zip(non_code_parts, code_blocks + [""]):
|
219 |
+
if non_code.strip():
|
220 |
+
result.append(non_code)
|
221 |
+
if code.strip():
|
222 |
+
code = f"\n```{code}\n```"
|
223 |
+
result.append(code)
|
224 |
+
result = "".join(result)
|
225 |
+
md = f'<div class="md-message">{result}\n</div>'
|
226 |
+
return raw + md
|
227 |
+
|
228 |
+
def convert_user_before_marked(chat_message):
|
229 |
+
if '<div class="user-message">' in chat_message:
|
230 |
+
return chat_message
|
231 |
+
else:
|
232 |
+
return f'<div class="user-message">{escape_markdown(chat_message)}</div>'
|
233 |
+
|
234 |
+
def escape_markdown(text):
|
235 |
+
"""
|
236 |
+
Escape Markdown special characters to HTML-safe equivalents.
|
237 |
+
"""
|
238 |
+
escape_chars = {
|
239 |
+
' ': ' ',
|
240 |
+
'_': '_',
|
241 |
+
'*': '*',
|
242 |
+
'[': '[',
|
243 |
+
']': ']',
|
244 |
+
'(': '(',
|
245 |
+
')': ')',
|
246 |
+
'{': '{',
|
247 |
+
'}': '}',
|
248 |
+
'#': '#',
|
249 |
+
'+': '+',
|
250 |
+
'-': '-',
|
251 |
+
'.': '.',
|
252 |
+
'!': '!',
|
253 |
+
'`': '`',
|
254 |
+
'>': '>',
|
255 |
+
'<': '<',
|
256 |
+
'|': '|'
|
257 |
+
}
|
258 |
+
return ''.join(escape_chars.get(c, c) for c in text)
|
259 |
+
|
260 |
+
|
261 |
+
def convert_asis(userinput): # deprecated
|
262 |
return (
|
263 |
f'<p style="white-space:pre-wrap;">{html.escape(userinput)}</p>'
|
264 |
+ ALREADY_CONVERTED_MARK
|
265 |
)
|
266 |
|
267 |
|
268 |
+
def detect_converted_mark(userinput): # deprecated
|
269 |
try:
|
270 |
if userinput.endswith(ALREADY_CONVERTED_MARK):
|
271 |
return True
|
|
|
275 |
return True
|
276 |
|
277 |
|
278 |
+
def detect_language(code): # deprecated
|
279 |
if code.startswith("\n"):
|
280 |
first_line = ""
|
281 |
else:
|
|
|
310 |
history_file_path = filename
|
311 |
else:
|
312 |
history_file_path = os.path.join(HISTORY_DIR, user_name, filename)
|
313 |
+
with open(history_file_path, "w", encoding='utf-8') as f:
|
314 |
+
json.dump(json_s, f, ensure_ascii=False)
|
315 |
elif filename.endswith(".md"):
|
316 |
md_s = f"system: \n- {system} \n"
|
317 |
for data in history:
|
|
|
551 |
<a style="text-decoration:none;color:inherit" href="https://github.com/GaiZhenbiao/ChuanhuChatGPT">ChuanhuChat</a>: {commit_info}
|
552 |
"""
|
553 |
|
554 |
+
def get_html(filename):
|
555 |
+
path = os.path.join(shared.chuanhu_path, "assets", "html", filename)
|
556 |
+
if os.path.exists(path):
|
557 |
+
with open(path, encoding="utf8") as file:
|
558 |
+
return file.read()
|
559 |
+
return ""
|
560 |
+
|
561 |
def add_source_numbers(lst, source_name = "Source", use_source = True):
|
562 |
if use_source:
|
563 |
return [f'[{idx+1}]\t "{item[0]}"\n{source_name}: {item[1]}' for idx, item in enumerate(lst)]
|
|
|
624 |
def new_auto_history_filename(dirname):
|
625 |
latest_file = get_latest_filepath(dirname)
|
626 |
if latest_file:
|
627 |
+
with open(os.path.join(dirname, latest_file), 'r', encoding="utf-8") as f:
|
628 |
if len(f.read()) == 0:
|
629 |
return latest_file
|
630 |
now = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
|
requirements.txt
CHANGED
@@ -1,18 +1,25 @@
|
|
1 |
-
gradio==3.
|
2 |
-
gradio_client==0.
|
3 |
-
mdtex2html
|
4 |
pypinyin
|
5 |
tiktoken
|
6 |
socksio
|
7 |
tqdm
|
8 |
colorama
|
9 |
-
|
10 |
Pygments
|
11 |
-
|
12 |
-
langchain<0.0.150
|
13 |
markdown
|
14 |
PyPDF2
|
15 |
pdfplumber
|
16 |
pandas
|
17 |
commentjson
|
18 |
openpyxl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.33.1
|
2 |
+
gradio_client==0.2.5
|
|
|
3 |
pypinyin
|
4 |
tiktoken
|
5 |
socksio
|
6 |
tqdm
|
7 |
colorama
|
8 |
+
googlesearch-python
|
9 |
Pygments
|
10 |
+
langchain==0.0.173
|
|
|
11 |
markdown
|
12 |
PyPDF2
|
13 |
pdfplumber
|
14 |
pandas
|
15 |
commentjson
|
16 |
openpyxl
|
17 |
+
pandoc
|
18 |
+
wolframalpha
|
19 |
+
faiss-cpu
|
20 |
+
duckduckgo-search
|
21 |
+
arxiv
|
22 |
+
wikipedia
|
23 |
+
google.generativeai
|
24 |
+
openai
|
25 |
+
unstructured
|