|
from __future__ import annotations |
|
import logging |
|
|
|
from llama_index import Prompt |
|
from typing import List, Tuple |
|
import mdtex2html |
|
|
|
from presets import * |
|
from llama_func import * |
|
|
|
|
|
def compact_text_chunks(self, prompt: Prompt, text_chunks: List[str]) -> List[str]: |
|
logging.debug("Compacting text chunks...πππ") |
|
combined_str = [c.strip() for c in text_chunks if c.strip()] |
|
combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)] |
|
combined_str = "\n\n".join(combined_str) |
|
|
|
text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1) |
|
return text_splitter.split_text(combined_str) |
|
|
|
|
|
def postprocess( |
|
self, y: List[Tuple[str | None, str | None]] |
|
) -> List[Tuple[str | None, str | None]]: |
|
""" |
|
Parameters: |
|
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. |
|
Returns: |
|
List of tuples representing the message and response. Each message and response will be a string of HTML. |
|
""" |
|
if y is None: |
|
return [] |
|
for i, (message, response) in enumerate(y): |
|
y[i] = ( |
|
|
|
|
|
None if message is None else message, |
|
None if response is None else mdtex2html.convert(response, extensions=['fenced_code','codehilite','tables']), |
|
) |
|
return y |
|
|