import streamlit as st import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain # from langchain.llms import HuggingFaceHub from streamlit_chat import message def get_pdf_text(pdfs): text="" for pdf in pdfs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text+= page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap = 200, length_function=len) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): embeddings = OpenAIEmbeddings() # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl") llm = ChatOpenAI() memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def user_input(user_question): response = st.session_state.conversation({'question':user_question}) st.session_state.chat_history = response['chat_history'] for i, messages in enumerate(st.session_state.chat_history): if i % 2 == 0: message(messages.content, is_user=True) else: message(messages.content) def main(): load_dotenv() st.set_page_config(page_title="PDF Copilot 🚀") if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("PDF Copilot 🚀") user_question = st.text_input("Ask a question about your documents...") if user_question: user_input(user_question) with st.sidebar: st.subheader("Your Documents") pdfs = st.file_uploader("Upload here", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): raw_text = get_pdf_text(pdfs) # print(raw_text) chunks = get_text_chunks(raw_text) vectorstore = get_vectorstore(chunks) st.session_state.conversation = get_conversation_chain(vectorstore) st.success("Processing Complete !") if __name__ == '__main__': main()