Spaces:
Sleeping
Sleeping
import streamlit as st | |
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
# from langchain.llms import HuggingFaceHub | |
from streamlit_chat import message | |
def get_pdf_text(pdfs): | |
text="" | |
for pdf in pdfs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text+= page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter(separator="\n", | |
chunk_size=1000, chunk_overlap = 200, length_function=len) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
embeddings = OpenAIEmbeddings() | |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl") | |
llm = ChatOpenAI() | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def user_input(user_question): | |
response = st.session_state.conversation({'question':user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, messages in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
message(messages.content, is_user=True) | |
else: | |
message(messages.content) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="PDF Copilot π") | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("PDF Copilot π") | |
user_question = st.text_input("Ask a question about your documents...") | |
if user_question: | |
user_input(user_question) | |
with st.sidebar: | |
st.subheader("Your Documents") | |
pdfs = st.file_uploader("Upload here", accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
raw_text = get_pdf_text(pdfs) | |
# print(raw_text) | |
chunks = get_text_chunks(raw_text) | |
vectorstore = get_vectorstore(chunks) | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
st.success("Processing Complete !") | |
if __name__ == '__main__': | |
main() |