Spaces:
Runtime error
Runtime error
import openai | |
# Set up the OpenAI API credentials | |
openai.api_key = "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" | |
# Code snippet | |
code = """ | |
from tempfile import NamedTemporaryFile | |
from langchain.agents import create_csv_agent | |
from langchain.llms import OpenAI | |
from dotenv import load_dotenv | |
import os | |
import streamlit as st | |
import pandas as pd | |
def main(): | |
load_dotenv() | |
# Load the OpenAI API key from the environment variable | |
api_key = os.getenv("OPENAI_API_KEY") | |
if api_key is None or api_key == "": | |
st.error("OPENAI_API_KEY is not set") | |
return | |
st.set_page_config(page_title="Insightly") | |
st.sidebar.image("/home/oem/Downloads/insightly_wbg.png", use_column_width=True) | |
st.header("Data Analysis 📈") | |
csv_files = st.file_uploader("Upload CSV files", type="csv", accept_multiple_files=True) | |
if csv_files: | |
llm = OpenAI(temperature=0) | |
user_input = st.text_input("Question here:") | |
# Iterate over each CSV file | |
for csv_file in csv_files: | |
with NamedTemporaryFile(delete=False) as f: | |
f.write(csv_file.getvalue()) | |
f.flush() | |
df = pd.read_csv(f.name) | |
# Perform any necessary data preprocessing or feature engineering here | |
# You can modify the code based on your specific requirements | |
# Example: Accessing columns from the DataFrame | |
# column_data = df["column_name"] | |
# Example: Applying transformations or calculations to the data | |
# transformed_data = column_data.apply(lambda x: x * 2) | |
# Example: Using the preprocessed data with the OpenAI API | |
# llm_response = llm.predict(transformed_data) | |
if user_input: | |
# Pass the user input to the OpenAI agent for processing | |
agent = create_csv_agent(llm, f.name, verbose=True) | |
response = agent.run(user_input) | |
st.write(f"CSV File: {csv_file.name}") | |
st.write("Response:") | |
st.write(response) | |
if __name__ == "__main__": | |
main() | |
""" | |
# Retrieve the embeddings | |
response = openai.Completion.create( | |
model="gpt-3.5-turbo", | |
documents=[code], | |
num_completions=1, | |
return_prompt=True, | |
return_sequences=False, | |
expand_prompt=False | |
) | |
# Extract the embeddings from the response | |
embeddings = response.choices[0].embedding | |
# Print the embeddings | |
print(embeddings) |