import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" # carguemos el checkpoint para translación del habla asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) # carguemos el checkpoint texto-a-habla (text-to-speech) así como el speaker embeddings processor = SpeechT5Processor.from_pretrained("jjsprockel/speecht5_finetuned_voxpopuli_it") model = SpeechT5ForTextToSpeech.from_pretrained("jjsprockel/speecht5_finetuned_voxpopuli_it").to(device) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "it"}) return outputs["text"] def synthesise(text): inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Traductor al Italiano de Voz a Voz en Cascada" description = """ Demostración de un traductor de voz a voz en cascada (cascaded speech-to-speech translation o STST), funciona mapeando de una fuente de voz en cualquier lenguaje a una meta de texto en Italiano. Se usa el modelo de OpenAI [Whisper Base](https://huggingface.co/openai/whisper-base) para la traducción, y el modelo de Microsoft [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) sometido a un ajuse fino para pasar de texto-a-voz: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagrama de la traducción de voz a voz en cascada") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()