Spaces:
Runtime error
Runtime error
File size: 16,882 Bytes
0bf81ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import os
import math
import logging
import json
from pathlib import Path
from typing import Tuple, Optional, Union
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
log = logging.getLogger(__name__)
def load_weights(self, Module, path, name, default_name, prev_name=None, **kwargs):
hparams = None
assert isinstance(default_name, str), f'invalid default transformer name: {default_name}'
model = get_transformer_module(Module, default_name, **kwargs)
setattr(self, name, model)
return hparams
def get_transformer_module(Module, default_name, **kwargs):
if default_name == 'EleutherAI/gpt-j-6B':
kwargs = {**kwargs, **dict(revision="float16", torch_dtype=torch.float16, low_cpu_mem_usage=True)}
model = Module.from_pretrained(default_name, **kwargs)
return model
class MLP(nn.Module):
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
super(MLP, self).__init__()
self.divider = math.sqrt(sizes[-1] / sizes[0])
layers = []
for i in range(len(sizes) - 1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x / self.divider # scaling for the initial stability
x = self.model(x)
return x
class MlpTransformer(nn.Module):
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=F.relu, dropout=0.):
super().__init__()
out_d = out_d if out_d is not None else in_dim
self.fc1 = nn.Linear(in_dim, h_dim)
self.act = act
self.fc2 = nn.Linear(h_dim, out_d)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim_self // num_heads
self.scale = head_dim ** -0.5
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias)
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias)
self.project = nn.Linear(dim_self, dim_self)
self.dropout = nn.Dropout(dropout)
def forward(self, x, y=None, mask=None):
y = y if y is not None else x
b, n, c = x.shape
_, m, d = y.shape
# b n h dh
queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads)
# b m 2 h dh
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads)
keys, values = keys_values[:, :, 0], keys_values[:, :, 1]
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale
if mask is not None:
if mask.dim() == 2:
mask = mask.unsqueeze(1)
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf"))
attention = attention.softmax(dim=2)
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c)
out = self.project(out)
return out, attention
class TransformerLayer(nn.Module):
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=F.relu,
norm_layer: nn.Module = nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim_self)
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout)
self.norm2 = norm_layer(dim_self)
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout)
def forward_with_attention(self, x, y=None, mask=None):
x_, attention = self.attn(self.norm1(x), y, mask)
x = x + x_
x = x + self.mlp(self.norm2(x))
return x, attention
def forward(self, x, y=None, mask=None):
x = x + self.attn(self.norm1(x), y, mask)[0]
x = x + self.mlp(self.norm2(x))
return x
class Transformer(nn.Module):
def forward_with_attention(self, x, y=None, mask=None):
attentions = []
for layer in self.layers:
x, att = layer.forward_with_attention(x, y, mask)
attentions.append(att)
return x, attentions
def forward(self, x, y=None, mask=None):
for i, layer in enumerate(self.layers):
if i % 2 == 0 and self.enc_dec: # cross
x = layer(x, y)
elif self.enc_dec: # self
x = layer(x, x, mask)
else: # self or cross
x = layer(x, y, mask)
return x
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
mlp_ratio: float = 2., act=F.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False):
super(Transformer, self).__init__()
dim_ref = dim_ref if dim_ref is not None else dim_self
self.enc_dec = enc_dec
if enc_dec:
num_layers = num_layers * 2
layers = []
for i in range(num_layers):
if i % 2 == 0 and enc_dec: # cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
elif enc_dec: # self
layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
else: # self or cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
self.layers = nn.ModuleList(layers)
class TransformerMapper(nn.Module):
def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int = 10,
clip_length: int = 10, num_layers: int = 8):
super(TransformerMapper, self).__init__()
self.clip_length = clip_length
self.transformer = Transformer(dim_embedding, 8, num_layers)
self.linear = nn.Linear(dim_clip, clip_length * dim_embedding)
self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True)
def forward(self, x):
x = self.linear(x).view(x.shape[0], self.clip_length, -1)
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape)
prefix = torch.cat((x, prefix), dim=1)
out = self.transformer(prefix)[:, self.clip_length:]
return out
class ClipCap(nn.Module):
def __init__(self, model_name, device, prefix_length: int = 10, clip_length: int = 40, prefix_size: int = 512,
num_layers: int = 1, model_path: str = '', fix_gpt: bool = False,
use_label_prefix: bool = False, label_path: str = '', label_length: int = 10,
use_transformer_mapper: bool = False, use_ptuning_v2: bool = False,
dropout: float = 0,
model_weight: str = '', scalar_output: bool = False):
super(ClipCap, self).__init__()
self.prefix_length = prefix_length
self.prefix_size = prefix_size
self.label_length = label_length
self.scalar_output = scalar_output
self.num_layers = num_layers
self.use_transformer_mapper = use_transformer_mapper
self.use_ptuning_v2 = use_ptuning_v2
self.dropout = nn.Dropout(dropout)
hparams = load_weights(self, AutoModelForCausalLM, model_weight, 'gpt', model_name,
prev_name='model')
self.device = device
self.gpt = self.gpt.to(self.device)
config = self.gpt.config
self.match_n_layer = getattr(config, 'n_layer', getattr(config, 'num_layers', None)) # gpt2 vs. gpt_neo
self.match_n_head = getattr(config, 'n_head', getattr(config, 'num_heads', None))
self.n_embd = getattr(config, 'n_embd', getattr(config, 'hidden_size', None))
self.match_n_embd = self.n_embd // self.match_n_head
self.clip_project = self.get_mapper()
if Path(label_path).is_file():
with open(label_path) as f:
labels = json.load(f)
self.labels = {i: v for v, i in labels.items()}
if not use_label_prefix:
log.info("adding label projections")
self.label_project = nn.Sequential(
nn.Embedding(len(self.labels), self.prefix_size),
self.get_mapper()
)
if os.path.isfile(model_path):
log.info(f"loading model from {model_path}")
weight = torch.load(model_path, map_location=torch.device('cpu'))
weight = {k[len('clip_project.'):]: v for k, v in weight.items()
if k.startswith('clip_project.')}
self.clip_project.load_state_dict(weight)
if fix_gpt:
log.info("fixing gpt parameters")
for param in self.gpt.parameters():
param.requires_grad_(False)
if self.scalar_output:
self.gpt.lm_head = nn.Linear(self.gpt.transformer.embed_dim, 1).to(self.device)
self.clip_project = self.clip_project.to(self.device)
if hasattr(self, 'label_project'):
self.label_project = self.label_project.to(self.device)
def get_mapper(self):
if self.use_ptuning_v2:
total_embd = self.match_n_layer * 2 * self.n_embd
module = MLP((self.prefix_size,
*[self.prefix_size
for i in range(self.num_layers)],
total_embd * self.prefix_length))
elif self.use_transformer_mapper:
log.info("using transformer mapper")
module = TransformerMapper(self.prefix_size, self.n_embd,
self.prefix_length, self.prefix_length, num_layers=self.num_layers) # 8)
else:
module = MLP((self.prefix_size,
*[(self.n_embd * self.prefix_length) // 2
for i in range(self.num_layers)],
self.n_embd * self.prefix_length))
return module
def get_encoder_loss(self, input_ids: torch.Tensor, features: torch.Tensor,
device = None):
input_ids = input_ids[:, :self.prefix_length].to(device)
embedding = self.gpt.transformer.wte(input_ids)
features = features.to(device)
prefix_projections = self.clip_project(features.type_as(embedding)).reshape(-1, self.prefix_length, self.n_embd)
fct = nn.MSELoss()
loss = fct(prefix_projections, embedding.detach())
return loss
def forward(self, *args, **kwargs):
if self.use_ptuning_v2:
return self.forward_prefix(*args, **kwargs)
else:
return self.forward_embedding(*args, **kwargs)
def forward_embedding(self, input_ids: torch.Tensor, features: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values = None, device = None, **kwargs):
if device is None:
device = self.device
input_ids = input_ids.to(device)
if features is not None:
features = features.to(device)
if attention_mask is not None:
attention_mask = attention_mask.to(device)
if labels is not None:
labels = labels.to(device)
use_labels = labels is not None and hasattr(self, 'label_project')
embedding = self.gpt.transformer.wte(input_ids)
embed_txt = embedding
prefix_length = self.prefix_length
if use_labels:
prefix_length += self.label_length
if past_key_values is None:
prefix_projections = self.clip_project(features.type_as(embedding)).reshape(-1, self.prefix_length, self.n_embd)
if use_labels:
label_projections = self.label_project(labels.long()).reshape(-1, self.label_length, self.n_embd)
prefix_projections = torch.cat((prefix_projections, label_projections), dim=1)
embedding = torch.cat((prefix_projections.to(embedding.dtype), embedding), dim=1)
if torch.is_tensor(attention_mask):
prefix_mask = torch.ones_like(attention_mask)[:, :1].repeat(1, prefix_length)
attention_mask = torch.cat([prefix_mask, attention_mask], dim=1)
outputs = self.gpt(inputs_embeds=embedding, attention_mask=attention_mask,
past_key_values=past_key_values,
return_dict=True,
output_attentions=False,
output_hidden_states=True)
if past_key_values is None:
outputs.logits = outputs.logits[:, prefix_length:]
return outputs
def forward_prefix(self, input_ids: torch.Tensor, features: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values = None, device = None, **kwargs):
if device is None:
device = self.device
input_ids = input_ids.to(device)
if features is not None:
features = features.to(device)
if attention_mask is not None:
attention_mask = attention_mask.to(device)
if labels is not None:
labels = labels.to(device)
use_labels = labels is not None and hasattr(self, 'label_project')
prefix_length = self.prefix_length
if use_labels:
prefix_length += self.label_length
if past_key_values is None:
prefix_projections = self.clip_project(features.type_as(self.clip_project.model[0].weight))
prefix_projections = prefix_projections.reshape(-1, self.prefix_length,
self.match_n_layer * 2, self.match_n_head, self.match_n_embd)
if use_labels:
label_projections = self.label_project(labels.long())
label_projections = label_projections.reshape(-1, self.label_length,
self.match_n_layer * 2, self.match_n_head, self.match_n_embd)
prefix_projections = torch.cat((prefix_projections, label_projections), dim=1)
temp_control = prefix_projections
temp_control = self.dropout(temp_control)
past_key_values = temp_control.permute([2, 0, 3, 1, 4]).split(2)
if torch.is_tensor(attention_mask):
prefix_mask = torch.ones_like(attention_mask)[:, :1].repeat(1, prefix_length)
attention_mask = torch.cat([prefix_mask, attention_mask], dim=1)
outputs = self.gpt(input_ids=input_ids, attention_mask=attention_mask,
past_key_values=past_key_values,
return_dict=True,
output_attentions=False,
output_hidden_states=True)
if past_key_values is None:
outputs.logits = outputs.logits[:, prefix_length:]
return outputs
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
features = kwargs.get("features", None)
labels = kwargs.get("labels", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"features": features,
"labels": labels,
}
|