Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,10 @@
|
|
1 |
-
|
2 |
-
from transformers import
|
3 |
-
from huggingface_hub import InferenceClient
|
4 |
-
from typing import List, Tuple
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
history: List[Tuple[str, str]], # Using List and Tuple for type annotation
|
14 |
-
system_message: str,
|
15 |
-
max_tokens: int,
|
16 |
-
temperature: float,
|
17 |
-
top_p: float,
|
18 |
-
):
|
19 |
-
# Start with system message
|
20 |
-
messages = [{"role": "system", "content": system_message}]
|
21 |
-
|
22 |
-
# Append history to the messages list
|
23 |
-
for val in history:
|
24 |
-
if val[0]:
|
25 |
-
messages.append({"role": "user", "content": val[0]})
|
26 |
-
if val[1]:
|
27 |
-
messages.append({"role": "assistant", "content": val[1]})
|
28 |
-
|
29 |
-
# Append the current user message
|
30 |
-
messages.append({"role": "user", "content": message})
|
31 |
-
|
32 |
-
response = ""
|
33 |
-
|
34 |
-
# Use the tokenizer to process the input message
|
35 |
-
inputs = tokenizer(message, return_tensors="pt")
|
36 |
-
|
37 |
-
# Use the model to generate a response
|
38 |
-
with torch.no_grad(): # Disable gradients since we're just doing inference
|
39 |
-
outputs = model(**inputs)
|
40 |
-
response = tokenizer.decode(outputs.logits.argmax(dim=-1)[0], skip_special_tokens=True)
|
41 |
-
|
42 |
-
yield response
|
43 |
-
|
44 |
-
# Set up Gradio interface with additional options
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
# Launch the Gradio app
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
+
from transformers import AutoModelForPreTraining, AutoTokenizer
|
|
|
|
|
3 |
|
4 |
+
# Download model and tokenizer
|
5 |
+
model_path = hf_hub_download("law-ai/InLegalBERT", filename="pytorch_model.bin")
|
6 |
+
tokenizer_path = hf_hub_download("law-ai/InLegalBERT", filename="tokenizer_config.json")
|
7 |
|
8 |
+
# Load locally downloaded model and tokenizer
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
10 |
+
model = AutoModelForPreTraining.from_pretrained(model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|