import gradio as gr from fastai.vision.all import * import skimage import timm # quick function to strip the leading ###. off the parent label name def strip_parent_num(o): return parent_label(o).split('.')[1] # load the model learn = load_learner('birds-convnext_small_in22k.pkl') #function to run the image through the model and get the prediction labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Gradio customizations title = 'Bird Identifier' description = 'This model will predict the type of bird from an image.\n\nThe convnext_tiny_in22k model was refined using the CUB_200_2011 bird dataset.' #examples = ['cardinal1.jpg', 'crow.jpg'] examples = ['siamese.jpg'] interpretation = 'default' enable_queue = True article = '''
''' # Deploy gradio gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()