import gradio as gr from ultralytics import YOLOv10 import supervision as sv import spaces from huggingface_hub import hf_hub_download def download_models(model_id): hf_hub_download("kadirnar/yolov10", filename=f"{model_id}", local_dir=f"./") return f"./{model_id}" MODEL_PATH = 'yolov10n.pt' model = YOLOv10(MODEL_PATH) box_annotator = sv.BoxAnnotator() model_path = download_models(model_id) @spaces.GPU(duration=200) def detect(image): results = model(source=image, conf=0.25, verbose=False)[0] detections = sv.Detections.from_ultralytics(results) labels = [ f"{model.model.names[class_id]} {confidence:.2f}" for class_id, confidence in zip(detections.class_id, detections.confidence) ] annotated_image = box_annotator.annotate(image, detections=detections, labels=labels) return annotated_image gradio_app = gr.Blocks() with gradio_app: gr.HTML( """