|
import gradio as gr |
|
from ultralytics import YOLOv10 |
|
import supervision as sv |
|
import spaces |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
def download_models(model_id): |
|
hf_hub_download("kadirnar/yolov10", filename=f"{model_id}", local_dir=f"./") |
|
return f"./{model_id}" |
|
|
|
MODEL_PATH = 'yolov10n.pt' |
|
model = YOLOv10(MODEL_PATH) |
|
box_annotator = sv.BoxAnnotator() |
|
|
|
@spaces.GPU(duration=200) |
|
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold): |
|
model_path = download_models(model_id) |
|
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0] |
|
detections = sv.Detections.from_ultralytics(results) |
|
|
|
labels = [ |
|
f"{model.model.names[class_id]} {confidence:.2f}" |
|
for class_id, confidence in zip(detections.class_id, detections.confidence) |
|
] |
|
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels) |
|
|
|
return annotated_image |
|
|
|
def app(): |
|
with gr.Blocks(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(type="numpy", label="Image") |
|
|
|
model_id = gr.Dropdown( |
|
label="Model", |
|
choices=[ |
|
"yolov10n.pt", |
|
"yolov10s.pt", |
|
"yolov10m.pt", |
|
"yolov10b.pt", |
|
"yolov10x.pt", |
|
], |
|
value="yolov10s.pt", |
|
) |
|
image_size = gr.Slider( |
|
label="Image Size", |
|
minimum=320, |
|
maximum=1280, |
|
step=32, |
|
value=640, |
|
) |
|
conf_threshold = gr.Slider( |
|
label="Confidence Threshold", |
|
minimum=0.1, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.25, |
|
) |
|
iou_threshold = gr.Slider( |
|
label="IoU Threshold", |
|
minimum=0.1, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.45, |
|
) |
|
yolov10_infer = gr.Button(value="Detect Objects") |
|
|
|
with gr.Column(): |
|
output_image = gr.Image(type="numpy", label="Annotated Image") |
|
|
|
yolov10_infer.click( |
|
fn=yolov10_inference, |
|
inputs=[ |
|
image, |
|
model_id, |
|
image_size, |
|
conf_threshold, |
|
iou_threshold, |
|
], |
|
outputs=[output_image], |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
[ |
|
"huggingface.jpg", |
|
"yolov10m.pt", |
|
640, |
|
0.25, |
|
0.45, |
|
], |
|
[ |
|
"zidane.jpg", |
|
"yolov10b.pt", |
|
640, |
|
0.25, |
|
0.45, |
|
], |
|
], |
|
fn=yolov10_inference, |
|
inputs=[ |
|
image, |
|
model_id, |
|
image_size, |
|
conf_threshold, |
|
iou_threshold, |
|
], |
|
outputs=[output_image], |
|
cache_examples=True, |
|
) |
|
|
|
gradio_app = gr.Blocks() |
|
with gradio_app: |
|
gr.Markdown( |
|
""" |
|
# YOLOv10: State-of-the-Art Object Detection |
|
""" |
|
) |
|
gr.Markdown( |
|
""" |
|
Detect objects in images using the YOLOv10 model. Select a pre-trained model, adjust the inference settings, and upload an image to see the detected objects. |
|
""" |
|
) |
|
with gr.Row(): |
|
gr.Markdown( |
|
""" |
|
Follow me for more projects and updates: |
|
- [Twitter](https://twitter.com/kadirnar_ai) |
|
- [GitHub](https://github.com/kadirnar) |
|
- [LinkedIn](https://www.linkedin.com/in/kadir-nar/) |
|
- [HuggingFace](https://www.huggingface.co/kadirnar/) |
|
""" |
|
) |
|
|
|
app() |
|
|
|
gradio_app.launch(debug=True) |