import express from "express" import { python } from 'pythonia' import { daisy } from "./daisy.mts" import { alpine } from "./alpine.mts" // import Python dependencies const { AutoModelForCausalLM } = await python('ctransformers') // define the CSS and JS dependencies const css = [ "/css/daisyui@2.6.0.css", ].map(item => ``) .join("") const script = [ "/js/alpinejs@3.12.2.js", "/js/tailwindcss@3.3.2.js" ].map(item => ``) .join("") // import the language model (note: need a fast internet link) const llm = await AutoModelForCausalLM.from_pretrained$( "TheBloke/WizardCoder-15B-1.0-GGML", { model_file: "WizardCoder-15B-1.0.ggmlv3.q4_0.bin", model_type: "starcoder" }) const app = express() const port = 7860 const timeoutInSec = 60 * 60 console.log("timeout set to 60 minutes") app.use(express.static("public")) const maxParallelRequests = 1 const pending: { total: number; queue: string[]; } = { total: 0, queue: [], } const endRequest = (id: string, reason: string) => { if (!id || !pending.queue.includes(id)) { return } pending.queue = pending.queue.filter(i => i !== id) console.log(`request ${id} ended (${reason})`) } // we need to exit the open Python process or else it will keep running in the background process.on('SIGINT', () => { try { (python as any).exit() } catch (err) { // exiting Pythonia can get a bit messy: try/catch or not, // you *will* see warnings and tracebacks in the console } process.exit(0) }) app.get("/debug", (req, res) => { res.write(JSON.stringify({ nbTotal: pending.total, nbPending: pending.queue.length, queue: pending.queue, })) res.end() }) app.get("/", async (req, res) => { // naive implementation: we say we are out of capacity if (pending.queue.length >= maxParallelRequests) { res.write("sorry, max nb of parallel requests reached") res.end() return } // alternative approach: kill old queries // while (pending.queue.length > maxParallelRequests) { // endRequest(pending.queue[0], 'max nb of parallel request reached') // } const id = `${pending.total++}` console.log(`new request ${id}`) pending.queue.push(id) const prefix = `${css}${script}` res.write(prefix) req.on("close", function() { endRequest(id, "browser ended the connection") }) // for testing we kill after some delay setTimeout(() => { endRequest(id, `timed out after ${timeoutInSec}s`) }, timeoutInSec * 1000) const finalPrompt = `# Context Generate a webpage written in English about: ${req.query.prompt}. # Documentation ${daisy} # Guidelines - Do not write a tutorial or repeat the instruction, but directly write the final code within a script tag - Use a color scheme consistent with the brief and theme - You need to use Tailwind CSS and DaisyUI for the UI, pure vanilla JS and AlpineJS for the JS. - You vanilla JS code will be written directly inside the page, using - You MUST use English, not Latin! (I repeat: do NOT write lorem ipsum!) - No need to write code comments, and try to make the code compact (short function names etc) - Use a central layout by wrapping everything in a \`
\` # Result output ${prefix}` try { // be careful: if you input a prompt which is too large, you may experience a timeout const inputTokens = await llm.tokenize(finalPrompt) console.log("initializing the generator (may take 30s or more)") const generator = await llm.generate(inputTokens) console.log("generator initialized, beginning token streaming..") for await (const token of generator) { if (!pending.queue.includes(id)) { break } const tmp = await llm.detokenize(token) process.stdout.write(tmp) res.write(tmp) } endRequest(id, `normal end of the LLM stream for request ${id}`) } catch (e) { endRequest(id, `premature end of the LLM stream for request ${id} (${e})`) } try { res.end() } catch (err) { console.log(`couldn't end the HTTP stream for request ${id} (${err})`) } }) app.listen(port, () => { console.log(`Open http://localhost:${port}/?prompt=a%20landing%20page%20for%20a%20company%20called%20Hugging%20Face`) })