Spaces:
Running
on
Zero
Running
on
Zero
from diffusers import DiffusionPipeline | |
import os | |
import sys | |
from huggingface_hub import HfApi, hf_hub_download | |
# from .tools import build_dataset_json_from_list | |
import torch | |
class MOSDiffusionPipeline(DiffusionPipeline): | |
def __init__(self, reload_from_ckpt="./qa_mdt/checkpoint_389999.ckpt", base_folder=None): | |
""" | |
Initialize the MOS Diffusion pipeline and download the necessary files/folders. | |
Args: | |
config_yaml (str): Path to the YAML configuration file. | |
list_inference (str): Path to the file containing inference prompts. | |
reload_from_ckpt (str, optional): Checkpoint path to reload from. | |
base_folder (str, optional): Base folder to store downloaded files. Defaults to the current working directory. | |
""" | |
super().__init__() | |
self.base_folder = base_folder if base_folder else os.getcwd() | |
self.repo_id = "jadechoghari/qa-mdt" | |
self.config_yaml = "./qa_mdt/audioldm_train/config/mos_as_token/qa_mdt.yaml" | |
self.reload_from_ckpt = reload_from_ckpt | |
config_yaml_path = os.path.join(self.config_yaml) | |
self.configs = self.load_yaml(config_yaml_path) | |
self.configs["reload_from_ckpt"] = self.reload_from_ckpt | |
self.exp_name = os.path.basename(self.config_yaml.split(".")[0]) | |
self.exp_group_name = os.path.basename(os.path.dirname(self.config_yaml)) | |
def download_required_folders(self): | |
""" | |
Downloads the necessary folders from the Hugging Face Hub if they are not already available locally. | |
""" | |
api = HfApi() | |
files = api.list_repo_files(repo_id=self.repo_id) | |
required_folders = ["audioldm_train", "checkpoints", "infer", "log", "taming", "test_prompts"] | |
files_to_download = [f for f in files if any(f.startswith(folder) for folder in required_folders)] | |
for file in files_to_download: | |
local_file_path = os.path.join(self.base_folder, file) | |
if not os.path.exists(local_file_path): | |
downloaded_file = hf_hub_download(repo_id=self.repo_id, filename=file) | |
os.makedirs(os.path.dirname(local_file_path), exist_ok=True) | |
os.rename(downloaded_file, local_file_path) | |
sys.path.append(self.base_folder) | |
def load_yaml(self, yaml_path): | |
""" | |
Helper method to load the YAML configuration. | |
""" | |
import yaml | |
with open(yaml_path, "r") as f: | |
return yaml.safe_load(f) | |
def __call__(self, prompt: str): | |
""" | |
Run the MOS Diffusion Pipeline. This method calls the infer function from infer_mos5.py. | |
""" | |
from .infer.infer_mos5 import infer | |
dataset_key = self.build_dataset_json_from_prompt(prompt) | |
# we run inference with the prompt - configs - and other settings | |
infer( | |
dataset_key=dataset_key, | |
configs=self.configs, | |
config_yaml_path=self.config_yaml, | |
exp_group_name="qa_mdt", | |
exp_name="mos_as_token" | |
) | |
def build_dataset_json_from_prompt(self, prompt: str): | |
""" | |
Build dataset_key dynamically from the provided prompt. | |
""" | |
# for simplicity let's just return the prompt as the dataset_key | |
data = [{"wav": "", "caption": prompt}] # no wav file, just the caption (prompt) | |
return {"data": data} | |
# Example of how to use the pipeline | |
if __name__ == "__main__": | |
pipe = MOSDiffusionPipeline() | |
result = pipe("A modern synthesizer creating futuristic soundscapes.") | |
print(result) | |