File size: 2,642 Bytes
9b9e0ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import numpy as np
import librosa.util as librosa_util
from scipy.signal import get_window


def window_sumsquare(
    window,
    n_frames,
    hop_length,
    win_length,
    n_fft,
    dtype=np.float32,
    norm=None,
):
    """
    # from librosa 0.6
    Compute the sum-square envelope of a window function at a given hop length.

    This is used to estimate modulation effects induced by windowing
    observations in short-time fourier transforms.

    Parameters
    ----------
    window : string, tuple, number, callable, or list-like
        Window specification, as in `get_window`

    n_frames : int > 0
        The number of analysis frames

    hop_length : int > 0
        The number of samples to advance between frames

    win_length : [optional]
        The length of the window function.  By default, this matches `n_fft`.

    n_fft : int > 0
        The length of each analysis frame.

    dtype : np.dtype
        The data type of the output

    Returns
    -------
    wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
        The sum-squared envelope of the window function
    """
    if win_length is None:
        win_length = n_fft

    n = n_fft + hop_length * (n_frames - 1)
    x = np.zeros(n, dtype=dtype)

    # Compute the squared window at the desired length
    win_sq = get_window(window, win_length, fftbins=True)
    win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
    win_sq = librosa_util.pad_center(win_sq, n_fft)

    # Fill the envelope
    for i in range(n_frames):
        sample = i * hop_length
        x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
    return x


def griffin_lim(magnitudes, stft_fn, n_iters=30):
    """
    PARAMS
    ------
    magnitudes: spectrogram magnitudes
    stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
    """

    angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
    angles = angles.astype(np.float32)
    angles = torch.autograd.Variable(torch.from_numpy(angles))
    signal = stft_fn.inverse(magnitudes, angles).squeeze(1)

    for i in range(n_iters):
        _, angles = stft_fn.transform(signal)
        signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
    return signal


def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
    """
    PARAMS
    ------
    C: compression factor
    """
    return normalize_fun(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression(x, C=1):
    """
    PARAMS
    ------
    C: compression factor used to compress
    """
    return torch.exp(x) / C