import os import gc import gradio as gr import numpy as np import torch import json import spaces import config import utils import logging from PIL import Image, PngImagePlugin from datetime import datetime from diffusers.models import AutoencoderKL from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) DESCRIPTION = "RealVis XL" if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1" HF_TOKEN = os.getenv("HF_TOKEN") CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512")) MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs") MODEL = os.getenv( "MODEL", "https://huggingface.co/SG161222/RealVisXL_V4.0/blob/main/RealVisXL_V4.0.safetensors", ) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def load_pipeline(model_name): vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, ) pipeline = ( StableDiffusionXLPipeline.from_single_file if MODEL.endswith(".safetensors") else StableDiffusionXLPipeline.from_pretrained ) pipe = pipeline( model_name, vae=vae, torch_dtype=torch.float16, custom_pipeline="lpw_stable_diffusion_xl", use_safetensors=True, add_watermarker=False, use_auth_token=HF_TOKEN, variant="fp16", ) pipe.to(device) return pipe @spaces.GPU def generate( prompt: str, negative_prompt: str = "", seed: int = 0, custom_width: int = 1024, custom_height: int = 1024, guidance_scale: float = 7.0, num_inference_steps: int = 30, sampler: str = "DPM++ 2M SDE Karras", aspect_ratio_selector: str = "1024 x 1024", use_upscaler: bool = False, upscaler_strength: float = 0.55, upscale_by: float = 1.5, progress=gr.Progress(track_tqdm=True), ) -> list: generator = utils.seed_everything(seed) width, height = utils.aspect_ratio_handler( aspect_ratio_selector, custom_width, custom_height, ) width, height = utils.preprocess_image_dimensions(width, height) backup_scheduler = pipe.scheduler pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler) metadata = { "prompt": prompt, "negative_prompt": negative_prompt, "resolution": f"{width} x {height}", "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "seed": seed, "sampler": sampler, "use_upscaler": use_upscaler, "upscaler_strength": upscaler_strength, "upscale_by": upscale_by, } logger.info(json.dumps(metadata, indent=4)) try: images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="pil", ).images if use_upscaler: images = [image.resize((int(width * upscale_by), int(height * upscale_by))) for image in images] return images, metadata except Exception as e: logger.exception(f"An error occurred: {e}") raise finally: pipe.scheduler = backup_scheduler utils.free_memory() if torch.cuda.is_available(): pipe = load_pipeline(MODEL) logger.info("Loaded on Device!") else: pipe = None def postprocess_images(images): return images # No caption, just return the images with gr.Blocks(css="style.css") as demo: title = gr.HTML( f"""

{DESCRIPTION}

""", elem_id="title", ) gr.Markdown( f"""Gradio demo for ([RealVis XL]https://huggingface.co/SG161222/RealVisXL_V4.0/)""", elem_id="subtitle", ) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=5, placeholder="Enter your prompt", container=False, ) run_button = gr.Button( "Generate", variant="primary", scale=0 ) result = gr.Gallery( label="Result", columns=1, preview=True, show_label=False ) with gr.Accordion(label="Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative Prompt", max_lines=5, placeholder="Enter a negative prompt", value="" ) aspect_ratio_selector = gr.Radio( label="Aspect Ratio", choices=config.aspect_ratios, value="1024 x 1024", container=True, ) with gr.Group(visible=False) as custom_resolution: with gr.Row(): custom_width = gr.Slider( label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1024, ) custom_height = gr.Slider( label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1024, ) use_upscaler = gr.Checkbox(label="Use Upscaler", value=False) with gr.Row() as upscaler_row: upscaler_strength = gr.Slider( label="Strength", minimum=0, maximum=1, step=0.05, value=0.55, visible=False, ) upscale_by = gr.Slider( label="Upscale by", minimum=1, maximum=1.5, step=0.1, value=1.5, visible=False, ) sampler = gr.Dropdown( label="Sampler", choices=config.sampler_list, interactive=True, value="DPM++ 2M SDE Karras", ) with gr.Row(): seed = gr.Slider( label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0 ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Group(): with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=12, step=0.1, value=7.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=28, ) with gr.Accordion(label="Generation Parameters", open=False): gr_metadata = gr.JSON(label="Metadata", show_label=False) gr.Examples( examples=config.examples, inputs=prompt, outputs=[result, gr_metadata], fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs), cache_examples=CACHE_EXAMPLES, ) use_upscaler.change( fn=lambda x: [gr.update(visible=x), gr.update(visible=x)], inputs=use_upscaler, outputs=[upscaler_strength, upscale_by], queue=False, api_name=False, ) aspect_ratio_selector.change( fn=lambda x: gr.update(visible=x == "Custom"), inputs=aspect_ratio_selector, outputs=custom_resolution, queue=False, api_name=False, ) inputs = [ prompt, negative_prompt, seed, custom_width, custom_height, guidance_scale, num_inference_steps, sampler, aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by, ] prompt.submit( fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=[result, gr_metadata], api_name="run", ) negative_prompt.submit( fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=[result, gr_metadata], api_name=False, ) run_button.click( fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=[result, gr_metadata], api_name=False, ) demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB, show_error=True)