Spaces:
Runtime error
Runtime error
update
Browse files- __pycache__/model.cpython-310.pyc +0 -0
- app.py +16 -25
- model.py +14 -5
__pycache__/model.cpython-310.pyc
CHANGED
Binary files a/__pycache__/model.cpython-310.pyc and b/__pycache__/model.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -6,18 +6,12 @@ from collections import defaultdict
|
|
6 |
import streamlit as st
|
7 |
from streamlit_drawable_canvas import st_canvas
|
8 |
|
9 |
-
import torch
|
10 |
-
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
|
11 |
-
from diffusers import StableDiffusionInpaintPipeline
|
12 |
-
|
13 |
import matplotlib as mpl
|
14 |
|
15 |
-
from model import segment_image, inpaint
|
16 |
|
17 |
|
18 |
# define utils and helpers
|
19 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
20 |
-
|
21 |
def closest_number(n, m=8):
|
22 |
""" Obtains closest number to n that is divisble by m """
|
23 |
return int(n/m) * m
|
@@ -96,7 +90,10 @@ def get_mask(image, edit_method, height, width):
|
|
96 |
|
97 |
if __name__ == '__main__':
|
98 |
|
99 |
-
st.title("Stable Edit
|
|
|
|
|
|
|
100 |
|
101 |
sf = st.text_input("Please enter resizing scale factor to downsize image (default=2)", value="2")
|
102 |
try:
|
@@ -126,22 +123,16 @@ if __name__ == '__main__':
|
|
126 |
|
127 |
# get inpainted images
|
128 |
prompt = st.text_input("Please enter prompt for image inpainting", value="")
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
# display all images
|
141 |
-
st.write("Original Image")
|
142 |
-
st.image(image)
|
143 |
-
for i, img in enumerate(images, 1):
|
144 |
-
st.write(f"result: {i}")
|
145 |
-
st.image(img)
|
146 |
|
147 |
|
|
|
6 |
import streamlit as st
|
7 |
from streamlit_drawable_canvas import st_canvas
|
8 |
|
|
|
|
|
|
|
|
|
9 |
import matplotlib as mpl
|
10 |
|
11 |
+
from model import device, segment_image, inpaint
|
12 |
|
13 |
|
14 |
# define utils and helpers
|
|
|
|
|
15 |
def closest_number(n, m=8):
|
16 |
""" Obtains closest number to n that is divisble by m """
|
17 |
return int(n/m) * m
|
|
|
90 |
|
91 |
if __name__ == '__main__':
|
92 |
|
93 |
+
st.title("Stable Edit")
|
94 |
+
st.title("Edit your photos with Stable Diffusion!")
|
95 |
+
|
96 |
+
st.write(f"Device found: {device}")
|
97 |
|
98 |
sf = st.text_input("Please enter resizing scale factor to downsize image (default=2)", value="2")
|
99 |
try:
|
|
|
123 |
|
124 |
# get inpainted images
|
125 |
prompt = st.text_input("Please enter prompt for image inpainting", value="")
|
126 |
+
|
127 |
+
if prompt: # and isinstance(seed, int):
|
128 |
+
st.write("Inpainting Images, patience is a virtue and this will take a while to run on a CPU :)")
|
129 |
+
images = inpaint(image, mask, width, height, prompt=prompt, seed=0, guidance_scale=17.5, num_samples=3)
|
130 |
+
|
131 |
+
# display all images
|
132 |
+
st.write("Original Image")
|
133 |
+
st.image(image)
|
134 |
+
for i, img in enumerate(images, 1):
|
135 |
+
st.write(f"result: {i}")
|
136 |
+
st.image(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
|
model.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
|
3 |
-
from diffusers import StableDiffusionInpaintPipeline
|
4 |
|
5 |
|
6 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
@@ -30,7 +30,7 @@ def segment_image(image):
|
|
30 |
|
31 |
return seg_prediction, segment_labels
|
32 |
|
33 |
-
# Image inpainting
|
34 |
# get Stable Diffusion model for image inpainting
|
35 |
if device == 'cuda':
|
36 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
@@ -39,9 +39,18 @@ if device == 'cuda':
|
|
39 |
).to(device)
|
40 |
else:
|
41 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
42 |
-
"runwayml/stable-diffusion-inpainting"
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def inpaint(image, mask, W, H, prompt="", seed=0, guidance_scale=17.5, num_samples=3):
|
47 |
""" Uses Stable Diffusion model to inpaint image
|
|
|
1 |
import torch
|
2 |
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
|
3 |
+
from diffusers import StableDiffusionInpaintPipeline # , DiffusionPipeline
|
4 |
|
5 |
|
6 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
30 |
|
31 |
return seg_prediction, segment_labels
|
32 |
|
33 |
+
# Image inpainting pipeline
|
34 |
# get Stable Diffusion model for image inpainting
|
35 |
if device == 'cuda':
|
36 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
|
39 |
).to(device)
|
40 |
else:
|
41 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
42 |
+
"runwayml/stable-diffusion-inpainting",
|
43 |
+
torch_dtype=torch.bfloat16,
|
44 |
+
device_map="auto"
|
45 |
+
)
|
46 |
+
|
47 |
+
# pipe = StableDiffusionInpaintPipeline.from_pretrained( # DiffusionPipeline.from_pretrained(
|
48 |
+
# "runwayml/stable-diffusion-inpainting",
|
49 |
+
# revision="fp16",
|
50 |
+
# torch_dtype=torch.bfloat16,
|
51 |
+
# # device_map="auto" # use for Hugging face spaces
|
52 |
+
# )
|
53 |
+
# pipe.to(device) # use for local environment
|
54 |
|
55 |
def inpaint(image, mask, W, H, prompt="", seed=0, guidance_scale=17.5, num_samples=3):
|
56 |
""" Uses Stable Diffusion model to inpaint image
|