import streamlit as st from fastai.collab import * import torch from torch import nn import pickle import pandas as pd from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import sentencepiece import string import requests @st.cache_resource def load_stuff(): # Load the data loader dls = pd.read_pickle("dataloader.pkl") # Create an instance of the model learn = collab_learner(dls, use_nn=True, layers=[20, 10], y_range=(0, 10.5)) # Load the saved state dictionary state_dict = torch.load("myModel.pth", map_location=torch.device("cpu")) # Assign the loaded state dictionary to the model's load_state_dict() method learn.model.load_state_dict(state_dict) # load books dataframe books = pd.read_csv("./data/BX_Books.csv", sep=";", encoding="latin-1") # load tokenizer tokenizer = AutoTokenizer.from_pretrained("pszemraj/pegasus-x-large-book-summary") # load model model = AutoModelForSeq2SeqLM.from_pretrained( "pszemraj/pegasus-x-large-book-summary" ) return dls, learn, books, tokenizer, model dls, learn, books, tokenizer, model = load_stuff() # function to get recommendations def get_3_recs(book): book_factors = learn.model.embeds[1].weight idx = dls.classes["title"].o2i[book] distances = nn.CosineSimilarity(dim=1)(book_factors, book_factors[idx][None]) idxs = distances.argsort(descending=True)[1:4] recs = [dls.classes["title"][i] for i in idxs] return recs # function to get descriptions from Google Books def search_book_description(title): # Google Books API endpoint for book search url = "https://www.googleapis.com/books/v1/volumes" # Parameters for the book search params = {"q": title, "maxResults": 1} # Send GET request to Google Books API response = requests.get(url, params=params) # Check if the request was successful if response.status_code == 200: # Parse the JSON response to extract the book description data = response.json() if "items" in data and len(data["items"]) > 0: book_description = data["items"][0]["volumeInfo"].get( "description", "No description available." ) return book_description else: print("No book found with the given title.") return None else: # If the request failed, print the error message print("Error:", response.status_code, response.text) return None # function to ensure summaries end with punctuation def cut(sum): last_punc_idx = max(sum.rfind(".")) output = sum[: last_punc_idx + 1] return output # function to summarize def summarize(des_list): if "No description available." in des_list: idx = des_list.index("No description available.") des = des_list.copy() des.pop(idx) rest = summarize(des) rest.insert(idx, "No description available.") return rest else: # Tokenize all the descriptions in the list encoded_inputs = tokenizer( des_list, truncation=True, padding="longest", return_tensors="pt" ) # Generate summaries for all the inputs summaries = model.generate(**encoded_inputs, max_new_tokens=100) # Decode the summaries and process them outputs = tokenizer.batch_decode(summaries, skip_special_tokens=True) outputs = list(map(cut, outputs)) return outputs # function to get cover images def get_covers(recs): imgs = [books[books["Book-Title"] == r]["Image-URL-L"].tolist()[0] for r in recs] return imgs # streamlit app construction st.title("Your digital librarian") st.markdown( "Hi there! I recommend you books based on one you love (which might not be in the same genre because that's boring) and give you my own synopsis of each book. Enjoy!" ) options = books["Book-Title"].tolist() input = st.selectbox("Select your favorite book", options) if st.button("Get recommendations"): recs = get_3_recs(input) descriptions = list(map(search_book_description, recs)) des_sums = summarize(descriptions) imgs = get_covers(recs) col1, col2, col3 = st.columns(3) col1.image(imgs[0]) col1.markdown(f"**{recs[0]}**") col1.write(des_sums[0]) col2.image(imgs[1]) col2.markdown(f"**{recs[1]}**") col2.write(des_sums[1]) col3.image(imgs[2]) col3.markdown(f"**{recs[2]}**") col3.write(des_sums[2])