import streamlit as st from fastai.collab import * import torch from torch import nn import pickle import pandas as pd from transformers import PegasusForConditionalGeneration, PegasusTokenizer import sentencepiece import string import requests @st.cache_resource def load_stuff(): # Load the data loader dls= pd.read_pickle('dataloader.pkl') # Create an instance of the model learn = collab_learner(dls, use_nn=True,layers=[20,10],y_range=(0,10.5)) # Load the saved state dictionary state_dict = torch.load('myModel.pth',map_location=torch.device('cpu')) # Assign the loaded state dictionary to the model's load_state_dict() method learn.model.load_state_dict(state_dict) #load books dataframe books = pd.read_csv('./data/BX_Books.csv', sep=';',encoding='latin-1') #load tokenizer tokenizer = PegasusTokenizer.from_pretrained("pszemraj/pegasus-x-large-book-summary") #load model model = PegasusForConditionalGeneration.from_pretrained("pszemraj/pegasus-x-large-book-summary") return dls, learn, books, tokenizer, model dls, learn, books, tokenizer, model = load_stuff() #function to get recommendations def get_3_recs(book): book_factors = learn.model.embeds[1].weight idx = dls.classes['title'].o2i[book] distances = nn.CosineSimilarity(dim=1)(book_factors, book_factors[idx][None]) idxs = distances.argsort(descending=True)[1:4] recs = [dls.classes['title'][i] for i in idxs] return recs #function to get descriptions from Google Books def search_book_description(title): # Google Books API endpoint for book search url = "https://www.googleapis.com/books/v1/volumes" # Parameters for the book search params = { "q": title, "maxResults": 1 } # Send GET request to Google Books API response = requests.get(url, params=params) # Check if the request was successful if response.status_code == 200: # Parse the JSON response to extract the book description data = response.json() if "items" in data and len(data["items"]) > 0: book_description = data["items"][0]["volumeInfo"].get("description", "No description available.") return book_description else: print("No book found with the given title.") return None else: # If the request failed, print the error message print("Error:", response.status_code, response.text) return None #function to ensure summaries end with punctuation def cut(sum): last_punc_idx = max(sum.rfind(p) for p in string.punctuation) output = sum[:last_punc_idx + 1] return output #function to summarize def summarize(des_list): if "No description available." in des_list: idx = des_list.index("No description available.") des = des_list.copy() des.pop(idx) rest = summarize(des) rest.insert(idx,'No description available.') return rest else: # Tokenize all the descriptions in the list encoded_inputs = tokenizer(des_list, truncation=True, padding="longest", return_tensors="pt") # Generate summaries for all the inputs summaries = model.generate(**encoded_inputs, max_new_tokens=100) # Decode the summaries and process them outputs = tokenizer.batch_decode(summaries, skip_special_tokens=True) outputs = list(map(cut, outputs)) return outputs #function to get cover images def get_covers(recs): imgs = [books[books['Book-Title']==r]['Image-URL-L'].tolist()[0]for r in recs] return imgs #streamlit app construction st.title('Your digital librarian') st.markdown("Hi there! I recommend you books based on one you love (which might not be in the same genre because that's boring) and give you my own synopsis of each book. Enjoy!") options = books["Book-Title"].tolist() input = st.selectbox('Select your favorite book', options) if st.button("Get recommendations"): recs = get_3_recs(input) descriptions = list(map(search_book_description,recs)) des_sums = summarize(descriptions) imgs = get_covers(recs) col1, col2, col3 = st.columns(3) col1.image(imgs[0]) col1.markdown(f"**{recs[0]}**") col1.write(des_sums[0]) col2.image(imgs[1]) col2.markdown(f"**{recs[1]}**") col2.write(des_sums[1]) col3.image(imgs[2]) col3.markdown(f"**{recs[2]}**") col3.write(des_sums[2])