import gradio as gr import os os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') import logging numba_logger = logging.getLogger('numba') numba_logger.setLevel(logging.WARNING) import librosa import torch import commons import utils from models import SynthesizerTrn from text.symbols import symbols from text import text_to_sequence import numpy as np import soundfile as sf from preprocess_wave import FeatureInput def resize2d(x, target_len): source = np.array(x) source[source<0.001] = np.nan target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source) res = np.nan_to_num(target) return res def transcribe(path, length, transform): featur_pit = featureInput.compute_f0(path) featur_pit = featur_pit * 2**(transform/12) featur_pit = resize2d(featur_pit, length) coarse_pit = featureInput.coarse_f0(featur_pit) return coarse_pit def get_text(text, hps): text_norm = text_to_sequence(text, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) print(text_norm.shape) return text_norm convert_cnt = [0] hps_ms = utils.get_hparams_from_file("configs/nyarumul.json") net_g_ms = SynthesizerTrn( len(symbols), hps_ms.data.filter_length // 2 + 1, hps_ms.train.segment_size // hps_ms.data.hop_length, n_speakers=hps_ms.data.n_speakers, **hps_ms.model) featureInput = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length) hubert = torch.hub.load("bshall/hubert:main", "hubert_soft") _ = utils.load_checkpoint("nyarumodel.pth", net_g_ms, None) def vc_fn(sid,random1, input_audio,vc_transform): if input_audio is None: return "You need to upload an audio", None sampling_rate, audio = input_audio # print(audio.shape,sampling_rate) duration = audio.shape[0] / sampling_rate if duration > 45: return "请上传小于45s的音频,需要转换长音频请使用colab", None audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != 16000: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0) print(source.shape) with torch.inference_mode(): units = hubert.units(source) soft = units.squeeze(0).numpy() audio22050 = librosa.resample(audio, orig_sr=16000, target_sr=22050) sf.write("temp.wav", audio22050, 22050) pitch = transcribe("temp.wav", soft.shape[0], vc_transform) pitch = torch.LongTensor(pitch).unsqueeze(0) sid = torch.LongTensor([0]) if sid == "猫雷" else torch.LongTensor([1]) stn_tst = torch.FloatTensor(soft) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) audio = net_g_ms.infer(x_tst, x_tst_lengths, pitch=pitch,sid=sid, noise_scale=float(random1), noise_scale_w=0.1, length_scale=1)[0][0, 0].data.float().numpy() convert_cnt[0] += 1 print(convert_cnt[0]) return "Success", (hps_ms.data.sampling_rate, audio) app = gr.Blocks() with app: with gr.Tabs(): with gr.TabItem("Basic"): gr.Markdown(value="""**new!!!!!** 更新了一个训练更多epoch的版本:链接[在这里](https://huggingface.co/spaces/innnky/nyaru-svc2.0-advanced) ,增加了3个音色,增加了f0音高曲线等方便查看转换后是否跑调 old: 本模型相比与前一个模型,音质和音准方面有一定的提升,但是低音音域目前存在较大问题。 目前猫雷模型能够唱的最低音为#G3(207hz) 低于该音会当场爆炸(之前的模型只是会跑调), 因此请不要让这个模型唱男声的音高,请使用变调功能将音域移动至207hz以上。 该模型的 [github仓库链接](https://github.com/innnky/so-vits-svc) 如果想自己制作并训练模型可以访问这个 [github仓库](https://github.com/IceKyrin/sovits_guide) ps: 更新了一下模型,现在和视频中不是一个同一个模型,b站视频中的模型在git历史中(因为之前数据集中似乎混入了一些杂项导致音色有些偏离猫雷音色) """) sid = gr.Dropdown(label="音色",choices=['猫雷'], value="猫雷") vc_input3 = gr.Audio(label="上传音频(长度小于45秒)") vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)",value=0) random1 = gr.Number(label="随机化程度,似乎会影响音质,建议保持默认",value=0.4) vc_submit = gr.Button("转换", variant="primary") vc_output1 = gr.Textbox(label="Output Message") vc_output2 = gr.Audio(label="Output Audio") vc_submit.click(vc_fn, [sid,random1, vc_input3, vc_transform], [vc_output1, vc_output2]) app.launch()