Spaces:
Runtime error
Runtime error
更新模型,更换为使用@xiaolang 制作的GUI界面
Browse files- nyarumodel.pth → 83_epochs.pth +2 -2
- LICENSE +0 -21
- app.py +85 -102
- attentions.py +294 -286
- commons.py +99 -100
- configs/nyarumul.json +53 -10
- configs/sovits_pre.json +94 -0
- configs/{nyarusing.json → yilanqiu.json} +54 -13
- data_utils.py +12 -14
- hubert.pt +3 -0
- hubert_model.py +223 -0
- infer_tool.py +170 -0
- losses.py +0 -61
- mel_processing.py +0 -112
- models.py +8 -77
- modules.py +282 -284
- monotonic_align/__init__.py +0 -19
- monotonic_align/core.pyx +0 -42
- monotonic_align/setup.py +0 -9
- preprocess.py +0 -25
- preprocess_wave.py +6 -4
- requirements.txt +5 -1
- slicer.py +163 -0
- text/LICENSE +0 -19
- text/__init__.py +0 -54
- text/cleaners.py +0 -100
- text/symbols.py +0 -16
- train.py +0 -295
- train_ms.py +0 -296
- transforms.py +20 -22
- utils.py +210 -208
nyarumodel.pth → 83_epochs.pth
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b2d02f32e9df815c473e775187a5cbcc3fe60412681ec462d13570d7191b5e3
|
3 |
+
size 221251405
|
LICENSE
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2021 Jaehyeon Kim
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,120 +1,103 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
|
4 |
-
|
5 |
-
import logging
|
6 |
-
|
7 |
-
numba_logger = logging.getLogger('numba')
|
8 |
-
numba_logger.setLevel(logging.WARNING)
|
9 |
-
import librosa
|
10 |
import torch
|
11 |
-
import commons
|
12 |
-
import utils
|
13 |
-
from models import SynthesizerTrn
|
14 |
-
from text.symbols import symbols
|
15 |
-
from text import text_to_sequence
|
16 |
-
import numpy as np
|
17 |
-
import soundfile as sf
|
18 |
-
from preprocess_wave import FeatureInput
|
19 |
-
|
20 |
-
def resize2d(x, target_len):
|
21 |
-
source = np.array(x)
|
22 |
-
source[source<0.001] = np.nan
|
23 |
-
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
24 |
-
res = np.nan_to_num(target)
|
25 |
-
return res
|
26 |
-
|
27 |
-
def transcribe(path, length, transform):
|
28 |
-
featur_pit = featureInput.compute_f0(path)
|
29 |
-
featur_pit = featur_pit * 2**(transform/12)
|
30 |
-
featur_pit = resize2d(featur_pit, length)
|
31 |
-
coarse_pit = featureInput.coarse_f0(featur_pit)
|
32 |
-
return coarse_pit
|
33 |
-
|
34 |
-
def get_text(text, hps):
|
35 |
-
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
36 |
-
if hps.data.add_blank:
|
37 |
-
text_norm = commons.intersperse(text_norm, 0)
|
38 |
-
text_norm = torch.LongTensor(text_norm)
|
39 |
-
print(text_norm.shape)
|
40 |
-
return text_norm
|
41 |
-
|
42 |
-
convert_cnt = [0]
|
43 |
-
|
44 |
-
hps_ms = utils.get_hparams_from_file("configs/nyarumul.json")
|
45 |
-
net_g_ms = SynthesizerTrn(
|
46 |
-
len(symbols),
|
47 |
-
hps_ms.data.filter_length // 2 + 1,
|
48 |
-
hps_ms.train.segment_size // hps_ms.data.hop_length,
|
49 |
-
n_speakers=hps_ms.data.n_speakers,
|
50 |
-
**hps_ms.model)
|
51 |
-
|
52 |
-
featureInput = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length)
|
53 |
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
duration = audio.shape[0] / sampling_rate
|
65 |
-
if duration >
|
66 |
-
return "请上传小于
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
with torch.inference_mode():
|
76 |
-
units = hubert.units(source)
|
77 |
-
soft = units.squeeze(0).numpy()
|
78 |
-
audio22050 = librosa.resample(audio, orig_sr=16000, target_sr=22050)
|
79 |
-
sf.write("temp.wav", audio22050, 22050)
|
80 |
-
pitch = transcribe("temp.wav", soft.shape[0], vc_transform)
|
81 |
-
pitch = torch.LongTensor(pitch).unsqueeze(0)
|
82 |
-
sid = torch.LongTensor([0]) if sid == "猫雷" else torch.LongTensor([1])
|
83 |
-
stn_tst = torch.FloatTensor(soft)
|
84 |
-
with torch.no_grad():
|
85 |
-
x_tst = stn_tst.unsqueeze(0)
|
86 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
87 |
-
audio = net_g_ms.infer(x_tst, x_tst_lengths, pitch=pitch,sid=sid, noise_scale=float(random1),
|
88 |
-
noise_scale_w=0.1, length_scale=1)[0][0, 0].data.float().numpy()
|
89 |
-
convert_cnt[0] += 1
|
90 |
-
print(convert_cnt[0])
|
91 |
-
return "Success", (hps_ms.data.sampling_rate, audio)
|
92 |
|
93 |
|
94 |
app = gr.Blocks()
|
95 |
with app:
|
96 |
with gr.Tabs():
|
97 |
with gr.TabItem("Basic"):
|
98 |
-
gr.Markdown(value="""
|
99 |
-
|
100 |
-
目前猫雷模型能够唱的最低音为#G3(207hz) 低于该音会当场爆炸(之前的模型只是会跑调),
|
101 |
-
|
102 |
-
因此请不要让这个模型唱男声的音高,请使用变调功能将音域移动至207hz以上。
|
103 |
|
104 |
-
|
105 |
|
106 |
-
|
107 |
|
108 |
-
|
109 |
|
110 |
""")
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
115 |
vc_submit = gr.Button("转换", variant="primary")
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import soundfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
import infer_tool
|
6 |
|
7 |
+
convert_cnt = [0]
|
8 |
+
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
model_name = "83_epochs.pth"
|
10 |
+
config_name = "nyarumul.json"
|
11 |
+
net_g_ms, hubert_soft, feature_input, hps_ms = infer_tool.load_model(f"{model_name}", f"configs/{config_name}")
|
12 |
+
|
13 |
+
# 获取config参数
|
14 |
+
target_sample = hps_ms.data.sampling_rate
|
15 |
+
spk_dict = {
|
16 |
+
"猫雷2.0": 0,
|
17 |
+
"云灏": 2,
|
18 |
+
"即霜": 3,
|
19 |
+
"奕兰秋": 4
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
def vc_fn(sid, audio_record, audio_upload, tran):
|
24 |
+
print(sid)
|
25 |
+
if audio_upload is not None:
|
26 |
+
audio_path = audio_upload
|
27 |
+
elif audio_record is not None:
|
28 |
+
audio_path = audio_record
|
29 |
+
else:
|
30 |
+
return "你需要上传wav文件或使用网页内置的录音!", None
|
31 |
+
|
32 |
+
audio, sampling_rate = infer_tool.format_wav(audio_path, target_sample)
|
33 |
duration = audio.shape[0] / sampling_rate
|
34 |
+
if duration > 60:
|
35 |
+
return "请上传小于60s的音频,需要转换长音频请使用colab", None
|
36 |
+
|
37 |
+
o_audio, out_sr = infer_tool.infer(audio_path, spk_dict[sid], tran, net_g_ms, hubert_soft, feature_input)
|
38 |
+
out_path = f"./out_temp.wav"
|
39 |
+
soundfile.write(out_path, o_audio, target_sample)
|
40 |
+
infer_tool.f0_plt(audio_path, out_path, tran, hubert_soft, feature_input)
|
41 |
+
mistake, var = infer_tool.calc_error(audio_path, out_path, tran, feature_input)
|
42 |
+
return f"半音偏差:{mistake}\n半音方差:{var}", (
|
43 |
+
target_sample, o_audio), gr.Image.update("temp.jpg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
app = gr.Blocks()
|
47 |
with app:
|
48 |
with gr.Tabs():
|
49 |
with gr.TabItem("Basic"):
|
50 |
+
gr.Markdown(value="""
|
51 |
+
本模型为sovits_f0(含AI猫雷2.0音色),支持**60s以内**的**无伴奏**wav、mp3(单声道)格式,或使用**网页内置**的录音(二选一)
|
|
|
|
|
|
|
52 |
|
53 |
+
转换效果取决于源音频语气、节奏是否与目标音色相近,以及音域是否超出目标音色音域范围
|
54 |
|
55 |
+
猫雷音色低音音域效果不佳,如转换男声歌声,建议变调升 **6-10key**
|
56 |
|
57 |
+
该模型的 [github仓库链接](https://github.com/innnky/so-vits-svc),如果想自己制作并训练模型可以访问这个 [github仓库](https://github.com/IceKyrin/sovits_guide)
|
58 |
|
59 |
""")
|
60 |
+
speaker_id = gr.Dropdown(label="音色", choices=['猫雷2.0', '云灏', '即霜', "奕兰秋"], value="猫雷2.0")
|
61 |
+
record_input = gr.Audio(source="microphone", label="录制你的声音", type="filepath", elem_id="audio_inputs")
|
62 |
+
upload_input = gr.Audio(source="upload", label="上传音频(长度小于45秒)", type="filepath",
|
63 |
+
elem_id="audio_inputs")
|
64 |
+
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
65 |
vc_submit = gr.Button("转换", variant="primary")
|
66 |
+
out_audio = gr.Audio(label="Output Audio")
|
67 |
+
gr.Markdown(value="""
|
68 |
+
输出信息为音高平均偏差半音数量,体现转换音频的跑调情况(一般平均小于0.5个半音)
|
69 |
+
|
70 |
+
f0曲线可以直观的显示跑调情况,蓝色为输入音高,橙色为合成音频的音高
|
71 |
+
|
72 |
+
若**只看见橙色**,说明蓝色曲线被覆盖,转换效果较好
|
73 |
+
|
74 |
+
""")
|
75 |
+
out_message = gr.Textbox(label="跑调误差信息")
|
76 |
+
gr.Markdown(value="""f0曲线可以直观的显示跑调情况,蓝色为输入音高,橙色为合成音频的音高
|
77 |
+
|
78 |
+
若**只看见橙色**,说明蓝色曲线被覆盖,转换效果较好
|
79 |
+
|
80 |
+
""")
|
81 |
+
f0_image = gr.Image(label="f0曲线")
|
82 |
+
vc_submit.click(vc_fn, [speaker_id, record_input, upload_input, vc_transform],
|
83 |
+
[out_message, out_audio, f0_image])
|
84 |
+
with gr.TabItem("使用说明"):
|
85 |
+
gr.Markdown(value="""
|
86 |
+
0、合集:https://github.com/IceKyrin/sovits_guide/blob/main/README.md
|
87 |
+
|
88 |
+
1、仅支持sovit_f0(sovits2.0)模型
|
89 |
+
|
90 |
+
2、自行下载hubert-soft-0d54a1f4.pt改名为hubert.pt放置于pth文件夹下(已经下好了)
|
91 |
+
https://github.com/bshall/hubert/releases/tag/v0.1
|
92 |
+
|
93 |
+
3、pth文件夹下放置sovits2.0的模型
|
94 |
+
|
95 |
+
4、与模型配套的xxx.json,需有speaker项——人物列表
|
96 |
+
|
97 |
+
5、放无伴奏的音频、或网页内置录音,不要放奇奇怪怪的格式
|
98 |
+
|
99 |
+
6、仅供交流使用,不对用户行为负责
|
100 |
+
|
101 |
+
""")
|
102 |
|
103 |
+
app.launch()
|
attentions.py
CHANGED
@@ -1,303 +1,311 @@
|
|
1 |
-
import copy
|
2 |
import math
|
3 |
-
|
4 |
import torch
|
5 |
from torch import nn
|
6 |
-
from torch.nn import functional as
|
7 |
|
8 |
import commons
|
9 |
-
import modules
|
10 |
from modules import LayerNorm
|
11 |
-
|
12 |
|
13 |
class Encoder(nn.Module):
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
class Decoder(nn.Module):
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
class MultiHeadAttention(nn.Module):
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
255 |
|
256 |
|
257 |
class FFN(nn.Module):
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
|
1 |
import math
|
2 |
+
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
+
from torch.nn import functional as t_func
|
6 |
|
7 |
import commons
|
|
|
8 |
from modules import LayerNorm
|
9 |
+
|
10 |
|
11 |
class Encoder(nn.Module):
|
12 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4,
|
13 |
+
**kwargs):
|
14 |
+
super().__init__()
|
15 |
+
self.hidden_channels = hidden_channels
|
16 |
+
self.filter_channels = filter_channels
|
17 |
+
self.n_heads = n_heads
|
18 |
+
self.n_layers = n_layers
|
19 |
+
self.kernel_size = kernel_size
|
20 |
+
self.p_dropout = p_dropout
|
21 |
+
self.window_size = window_size
|
22 |
+
|
23 |
+
self.drop = nn.Dropout(p_dropout)
|
24 |
+
self.attn_layers = nn.ModuleList()
|
25 |
+
self.norm_layers_1 = nn.ModuleList()
|
26 |
+
self.ffn_layers = nn.ModuleList()
|
27 |
+
self.norm_layers_2 = nn.ModuleList()
|
28 |
+
for i in range(self.n_layers):
|
29 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout,
|
30 |
+
window_size=window_size))
|
31 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
32 |
+
self.ffn_layers.append(
|
33 |
+
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
34 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
35 |
+
|
36 |
+
def forward(self, x, x_mask):
|
37 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
38 |
+
x = x * x_mask
|
39 |
+
for i in range(self.n_layers):
|
40 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
41 |
+
y = self.drop(y)
|
42 |
+
x = self.norm_layers_1[i](x + y)
|
43 |
+
|
44 |
+
y = self.ffn_layers[i](x, x_mask)
|
45 |
+
y = self.drop(y)
|
46 |
+
x = self.norm_layers_2[i](x + y)
|
47 |
+
x = x * x_mask
|
48 |
+
return x
|
49 |
|
50 |
|
51 |
class Decoder(nn.Module):
|
52 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.,
|
53 |
+
proximal_bias=False, proximal_init=True, **kwargs):
|
54 |
+
super().__init__()
|
55 |
+
self.hidden_channels = hidden_channels
|
56 |
+
self.filter_channels = filter_channels
|
57 |
+
self.n_heads = n_heads
|
58 |
+
self.n_layers = n_layers
|
59 |
+
self.kernel_size = kernel_size
|
60 |
+
self.p_dropout = p_dropout
|
61 |
+
self.proximal_bias = proximal_bias
|
62 |
+
self.proximal_init = proximal_init
|
63 |
+
|
64 |
+
self.drop = nn.Dropout(p_dropout)
|
65 |
+
self.self_attn_layers = nn.ModuleList()
|
66 |
+
self.norm_layers_0 = nn.ModuleList()
|
67 |
+
self.encdec_attn_layers = nn.ModuleList()
|
68 |
+
self.norm_layers_1 = nn.ModuleList()
|
69 |
+
self.ffn_layers = nn.ModuleList()
|
70 |
+
self.norm_layers_2 = nn.ModuleList()
|
71 |
+
for i in range(self.n_layers):
|
72 |
+
self.self_attn_layers.append(
|
73 |
+
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout,
|
74 |
+
proximal_bias=proximal_bias, proximal_init=proximal_init))
|
75 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
76 |
+
self.encdec_attn_layers.append(
|
77 |
+
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
78 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
79 |
+
self.ffn_layers.append(
|
80 |
+
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
81 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
82 |
+
|
83 |
+
def forward(self, x, x_mask, h, h_mask):
|
84 |
+
"""
|
85 |
+
x: decoder input
|
86 |
+
h: encoder output
|
87 |
+
"""
|
88 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
89 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
90 |
+
x = x * x_mask
|
91 |
+
for i in range(self.n_layers):
|
92 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
93 |
+
y = self.drop(y)
|
94 |
+
x = self.norm_layers_0[i](x + y)
|
95 |
+
|
96 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
97 |
+
y = self.drop(y)
|
98 |
+
x = self.norm_layers_1[i](x + y)
|
99 |
+
|
100 |
+
y = self.ffn_layers[i](x, x_mask)
|
101 |
+
y = self.drop(y)
|
102 |
+
x = self.norm_layers_2[i](x + y)
|
103 |
+
x = x * x_mask
|
104 |
+
return x
|
105 |
|
106 |
|
107 |
class MultiHeadAttention(nn.Module):
|
108 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True,
|
109 |
+
block_length=None, proximal_bias=False, proximal_init=False):
|
110 |
+
super().__init__()
|
111 |
+
assert channels % n_heads == 0
|
112 |
+
|
113 |
+
self.channels = channels
|
114 |
+
self.out_channels = out_channels
|
115 |
+
self.n_heads = n_heads
|
116 |
+
self.p_dropout = p_dropout
|
117 |
+
self.window_size = window_size
|
118 |
+
self.heads_share = heads_share
|
119 |
+
self.block_length = block_length
|
120 |
+
self.proximal_bias = proximal_bias
|
121 |
+
self.proximal_init = proximal_init
|
122 |
+
self.attn = None
|
123 |
+
|
124 |
+
self.k_channels = channels // n_heads
|
125 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
126 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
127 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
128 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
129 |
+
self.drop = nn.Dropout(p_dropout)
|
130 |
+
|
131 |
+
if window_size is not None:
|
132 |
+
n_heads_rel = 1 if heads_share else n_heads
|
133 |
+
rel_stddev = self.k_channels ** -0.5
|
134 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
135 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
136 |
+
|
137 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
138 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
139 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
140 |
+
if proximal_init:
|
141 |
+
with torch.no_grad():
|
142 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
143 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
144 |
+
|
145 |
+
def forward(self, x, c, attn_mask=None):
|
146 |
+
q = self.conv_q(x)
|
147 |
+
k = self.conv_k(c)
|
148 |
+
v = self.conv_v(c)
|
149 |
+
|
150 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
151 |
+
|
152 |
+
x = self.conv_o(x)
|
153 |
+
return x
|
154 |
+
|
155 |
+
def attention(self, query, key, value, mask=None):
|
156 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
157 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
158 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
159 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
160 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
161 |
+
|
162 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
163 |
+
if self.window_size is not None:
|
164 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
165 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
166 |
+
rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
|
167 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
168 |
+
scores = scores + scores_local
|
169 |
+
if self.proximal_bias:
|
170 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
171 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
172 |
+
if mask is not None:
|
173 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
174 |
+
if self.block_length is not None:
|
175 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
176 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
177 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
178 |
+
p_attn = t_func.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
179 |
+
p_attn = self.drop(p_attn)
|
180 |
+
output = torch.matmul(p_attn, value)
|
181 |
+
if self.window_size is not None:
|
182 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
183 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
184 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
185 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
186 |
+
return output, p_attn
|
187 |
+
|
188 |
+
def _matmul_with_relative_values(self, x, y):
|
189 |
+
"""
|
190 |
+
x: [b, h, l, m]
|
191 |
+
y: [h or 1, m, d]
|
192 |
+
ret: [b, h, l, d]
|
193 |
+
"""
|
194 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
195 |
+
return ret
|
196 |
+
|
197 |
+
def _matmul_with_relative_keys(self, x, y):
|
198 |
+
"""
|
199 |
+
x: [b, h, l, d]
|
200 |
+
y: [h or 1, m, d]
|
201 |
+
ret: [b, h, l, m]
|
202 |
+
"""
|
203 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
204 |
+
return ret
|
205 |
+
|
206 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
207 |
+
max_relative_position = 2 * self.window_size + 1
|
208 |
+
# Pad first before slice to avoid using cond ops.
|
209 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
210 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
211 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
212 |
+
if pad_length > 0:
|
213 |
+
padded_relative_embeddings = t_func.pad(
|
214 |
+
relative_embeddings,
|
215 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
216 |
+
else:
|
217 |
+
padded_relative_embeddings = relative_embeddings
|
218 |
+
used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
|
219 |
+
return used_relative_embeddings
|
220 |
+
|
221 |
+
def _relative_position_to_absolute_position(self, x):
|
222 |
+
"""
|
223 |
+
x: [b, h, l, 2*l-1]
|
224 |
+
ret: [b, h, l, l]
|
225 |
+
"""
|
226 |
+
batch, heads, length, _ = x.size()
|
227 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
228 |
+
x = t_func.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
229 |
+
|
230 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
231 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
232 |
+
x_flat = t_func.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
|
233 |
+
|
234 |
+
# Reshape and slice out the padded elements.
|
235 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1:]
|
236 |
+
return x_final
|
237 |
+
|
238 |
+
def _absolute_position_to_relative_position(self, x):
|
239 |
+
"""
|
240 |
+
x: [b, h, l, l]
|
241 |
+
ret: [b, h, l, 2*l-1]
|
242 |
+
"""
|
243 |
+
batch, heads, length, _ = x.size()
|
244 |
+
# padd along column
|
245 |
+
x = t_func.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
|
246 |
+
x_flat = x.view([batch, heads, length ** 2 + length * (length - 1)])
|
247 |
+
# add 0's in the beginning that will skew the elements after reshape
|
248 |
+
x_flat = t_func.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
249 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
250 |
+
return x_final
|
251 |
+
|
252 |
+
def _attention_bias_proximal(self, length):
|
253 |
+
"""Bias for self-attention to encourage attention to close positions.
|
254 |
+
Args:
|
255 |
+
length: an integer scalar.
|
256 |
+
Returns:
|
257 |
+
a Tensor with shape [1, 1, length, length]
|
258 |
+
"""
|
259 |
+
r = torch.arange(length, dtype=torch.float32)
|
260 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
261 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
262 |
|
263 |
|
264 |
class FFN(nn.Module):
|
265 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None,
|
266 |
+
causal=False):
|
267 |
+
super().__init__()
|
268 |
+
self.in_channels = in_channels
|
269 |
+
self.out_channels = out_channels
|
270 |
+
self.filter_channels = filter_channels
|
271 |
+
self.kernel_size = kernel_size
|
272 |
+
self.p_dropout = p_dropout
|
273 |
+
self.activation = activation
|
274 |
+
self.causal = causal
|
275 |
+
|
276 |
+
if causal:
|
277 |
+
self.padding = self._causal_padding
|
278 |
+
else:
|
279 |
+
self.padding = self._same_padding
|
280 |
+
|
281 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
282 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
283 |
+
self.drop = nn.Dropout(p_dropout)
|
284 |
+
|
285 |
+
def forward(self, x, x_mask):
|
286 |
+
x = self.conv_1(self.padding(x * x_mask))
|
287 |
+
if self.activation == "gelu":
|
288 |
+
x = x * torch.sigmoid(1.702 * x)
|
289 |
+
else:
|
290 |
+
x = torch.relu(x)
|
291 |
+
x = self.drop(x)
|
292 |
+
x = self.conv_2(self.padding(x * x_mask))
|
293 |
+
return x * x_mask
|
294 |
+
|
295 |
+
def _causal_padding(self, x):
|
296 |
+
if self.kernel_size == 1:
|
297 |
+
return x
|
298 |
+
pad_l = self.kernel_size - 1
|
299 |
+
pad_r = 0
|
300 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
301 |
+
x = t_func.pad(x, commons.convert_pad_shape(padding))
|
302 |
+
return x
|
303 |
+
|
304 |
+
def _same_padding(self, x):
|
305 |
+
if self.kernel_size == 1:
|
306 |
+
return x
|
307 |
+
pad_l = (self.kernel_size - 1) // 2
|
308 |
+
pad_r = self.kernel_size // 2
|
309 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
310 |
+
x = t_func.pad(x, commons.convert_pad_shape(padding))
|
311 |
+
return x
|
commons.py
CHANGED
@@ -1,161 +1,160 @@
|
|
1 |
import math
|
2 |
-
|
3 |
import torch
|
4 |
-
from torch import
|
5 |
-
from torch.nn import functional as F
|
6 |
|
7 |
|
8 |
def init_weights(m, mean=0.0, std=0.01):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
|
13 |
|
14 |
def get_padding(kernel_size, dilation=1):
|
15 |
-
|
16 |
|
17 |
|
18 |
def convert_pad_shape(pad_shape):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
|
24 |
def intersperse(lst, item):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
|
30 |
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
|
37 |
def rand_gumbel(shape):
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
|
43 |
def rand_gumbel_like(x):
|
44 |
-
|
45 |
-
|
46 |
|
47 |
|
48 |
def slice_segments(x, ids_str, segment_size=4):
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
|
57 |
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
|
67 |
def get_timing_signal_1d(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
|
83 |
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
|
88 |
|
89 |
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
|
94 |
|
95 |
def subsequent_mask(length):
|
96 |
-
|
97 |
-
|
98 |
|
99 |
|
100 |
@torch.jit.script
|
101 |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
|
109 |
|
110 |
def convert_pad_shape(pad_shape):
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
|
116 |
def shift_1d(x):
|
117 |
-
|
118 |
-
|
119 |
|
120 |
|
121 |
def sequence_mask(length, max_length=None):
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
|
127 |
|
128 |
def generate_path(duration, mask):
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
|
145 |
|
146 |
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
if clip_value is not None:
|
152 |
-
clip_value = float(clip_value)
|
153 |
-
|
154 |
-
total_norm = 0
|
155 |
-
for p in parameters:
|
156 |
-
param_norm = p.grad.data.norm(norm_type)
|
157 |
-
total_norm += param_norm.item() ** norm_type
|
158 |
if clip_value is not None:
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
+
|
3 |
import torch
|
4 |
+
from torch.nn import functional as t_func
|
|
|
5 |
|
6 |
|
7 |
def init_weights(m, mean=0.0, std=0.01):
|
8 |
+
classname = m.__class__.__name__
|
9 |
+
if classname.find("Conv") != -1:
|
10 |
+
m.weight.data.normal_(mean, std)
|
11 |
|
12 |
|
13 |
def get_padding(kernel_size, dilation=1):
|
14 |
+
return int((kernel_size * dilation - dilation) / 2)
|
15 |
|
16 |
|
17 |
def convert_pad_shape(pad_shape):
|
18 |
+
l = pad_shape[::-1]
|
19 |
+
pad_shape = [item for sublist in l for item in sublist]
|
20 |
+
return pad_shape
|
21 |
|
22 |
|
23 |
def intersperse(lst, item):
|
24 |
+
result = [item] * (len(lst) * 2 + 1)
|
25 |
+
result[1::2] = lst
|
26 |
+
return result
|
27 |
|
28 |
|
29 |
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
30 |
+
"""KL(P||Q)"""
|
31 |
+
kl = (logs_q - logs_p) - 0.5
|
32 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2. * logs_q)
|
33 |
+
return kl
|
34 |
|
35 |
|
36 |
def rand_gumbel(shape):
|
37 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
38 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
39 |
+
return -torch.log(-torch.log(uniform_samples))
|
40 |
|
41 |
|
42 |
def rand_gumbel_like(x):
|
43 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
44 |
+
return g
|
45 |
|
46 |
|
47 |
def slice_segments(x, ids_str, segment_size=4):
|
48 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
49 |
+
for i in range(x.size(0)):
|
50 |
+
idx_str = ids_str[i]
|
51 |
+
idx_end = idx_str + segment_size
|
52 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
53 |
+
return ret
|
54 |
|
55 |
|
56 |
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
57 |
+
b, d, t = x.size()
|
58 |
+
if x_lengths is None:
|
59 |
+
x_lengths = t
|
60 |
+
ids_str_max = x_lengths - segment_size + 1
|
61 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
62 |
+
ret = slice_segments(x, ids_str, segment_size)
|
63 |
+
return ret, ids_str
|
64 |
|
65 |
|
66 |
def get_timing_signal_1d(
|
67 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
68 |
+
position = torch.arange(length, dtype=torch.float)
|
69 |
+
num_timescales = channels // 2
|
70 |
+
log_timescale_increment = (
|
71 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
72 |
+
(num_timescales - 1))
|
73 |
+
inv_timescales = min_timescale * torch.exp(
|
74 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
75 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
76 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
77 |
+
signal = t_func.pad(signal, [0, 0, 0, channels % 2])
|
78 |
+
signal = signal.view(1, channels, length)
|
79 |
+
return signal
|
80 |
|
81 |
|
82 |
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
83 |
+
b, channels, length = x.size()
|
84 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
85 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
86 |
|
87 |
|
88 |
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
89 |
+
b, channels, length = x.size()
|
90 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
91 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
92 |
|
93 |
|
94 |
def subsequent_mask(length):
|
95 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
96 |
+
return mask
|
97 |
|
98 |
|
99 |
@torch.jit.script
|
100 |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
101 |
+
n_channels_int = n_channels[0]
|
102 |
+
in_act = input_a + input_b
|
103 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
104 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
105 |
+
acts = t_act * s_act
|
106 |
+
return acts
|
107 |
|
108 |
|
109 |
def convert_pad_shape(pad_shape):
|
110 |
+
l = pad_shape[::-1]
|
111 |
+
pad_shape = [item for sublist in l for item in sublist]
|
112 |
+
return pad_shape
|
113 |
|
114 |
|
115 |
def shift_1d(x):
|
116 |
+
x = t_func.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
117 |
+
return x
|
118 |
|
119 |
|
120 |
def sequence_mask(length, max_length=None):
|
121 |
+
if max_length is None:
|
122 |
+
max_length = length.max()
|
123 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
124 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
125 |
|
126 |
|
127 |
def generate_path(duration, mask):
|
128 |
+
"""
|
129 |
+
duration: [b, 1, t_x]
|
130 |
+
mask: [b, 1, t_y, t_x]
|
131 |
+
"""
|
132 |
+
device = duration.device
|
133 |
+
|
134 |
+
b, _, t_y, t_x = mask.shape
|
135 |
+
cum_duration = torch.cumsum(duration, -1)
|
136 |
+
|
137 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
138 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
139 |
+
path = path.view(b, t_x, t_y)
|
140 |
+
path = path - t_func.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
141 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
142 |
+
return path
|
143 |
|
144 |
|
145 |
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
146 |
+
if isinstance(parameters, torch.Tensor):
|
147 |
+
parameters = [parameters]
|
148 |
+
parameters = list(filter(lambda para: para.grad is not None, parameters))
|
149 |
+
norm_type = float(norm_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
if clip_value is not None:
|
151 |
+
clip_value = float(clip_value)
|
152 |
+
|
153 |
+
total_norm = 0
|
154 |
+
for p in parameters:
|
155 |
+
param_norm = p.grad.data.norm(norm_type)
|
156 |
+
total_norm += param_norm.item() ** norm_type
|
157 |
+
if clip_value is not None:
|
158 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
159 |
+
total_norm = total_norm ** (1. / norm_type)
|
160 |
+
return total_norm
|
configs/nyarumul.json
CHANGED
@@ -5,7 +5,10 @@
|
|
5 |
"seed": 1234,
|
6 |
"epochs": 10000,
|
7 |
"learning_rate": 2e-4,
|
8 |
-
"betas": [
|
|
|
|
|
|
|
9 |
"eps": 1e-9,
|
10 |
"batch_size": 16,
|
11 |
"fp16_run": true,
|
@@ -17,9 +20,11 @@
|
|
17 |
"c_kl": 1.0
|
18 |
},
|
19 |
"data": {
|
20 |
-
"training_files":"/
|
21 |
-
"validation_files":"/
|
22 |
-
"text_cleaners":[
|
|
|
|
|
23 |
"max_wav_value": 32768.0,
|
24 |
"sampling_rate": 22050,
|
25 |
"filter_length": 1024,
|
@@ -29,7 +34,7 @@
|
|
29 |
"mel_fmin": 0.0,
|
30 |
"mel_fmax": null,
|
31 |
"add_blank": true,
|
32 |
-
"n_speakers":
|
33 |
"cleaned_text": true
|
34 |
},
|
35 |
"model": {
|
@@ -41,13 +46,51 @@
|
|
41 |
"kernel_size": 3,
|
42 |
"p_dropout": 0.1,
|
43 |
"resblock": "1",
|
44 |
-
"resblock_kernel_sizes": [
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
"upsample_initial_channel": 512,
|
48 |
-
"upsample_kernel_sizes": [
|
|
|
|
|
|
|
|
|
|
|
49 |
"n_layers_q": 3,
|
50 |
"use_spectral_norm": false,
|
51 |
"gin_channels": 256
|
52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
}
|
|
|
5 |
"seed": 1234,
|
6 |
"epochs": 10000,
|
7 |
"learning_rate": 2e-4,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
"eps": 1e-9,
|
13 |
"batch_size": 16,
|
14 |
"fp16_run": true,
|
|
|
20 |
"c_kl": 1.0
|
21 |
},
|
22 |
"data": {
|
23 |
+
"training_files": "/root/sovits/filelist/train.txt",
|
24 |
+
"validation_files": "/root/sovits/filelist/val.txt",
|
25 |
+
"text_cleaners": [
|
26 |
+
"english_cleaners2"
|
27 |
+
],
|
28 |
"max_wav_value": 32768.0,
|
29 |
"sampling_rate": 22050,
|
30 |
"filter_length": 1024,
|
|
|
34 |
"mel_fmin": 0.0,
|
35 |
"mel_fmax": null,
|
36 |
"add_blank": true,
|
37 |
+
"n_speakers": 8,
|
38 |
"cleaned_text": true
|
39 |
},
|
40 |
"model": {
|
|
|
46 |
"kernel_size": 3,
|
47 |
"p_dropout": 0.1,
|
48 |
"resblock": "1",
|
49 |
+
"resblock_kernel_sizes": [
|
50 |
+
3,
|
51 |
+
7,
|
52 |
+
11
|
53 |
+
],
|
54 |
+
"resblock_dilation_sizes": [
|
55 |
+
[
|
56 |
+
1,
|
57 |
+
3,
|
58 |
+
5
|
59 |
+
],
|
60 |
+
[
|
61 |
+
1,
|
62 |
+
3,
|
63 |
+
5
|
64 |
+
],
|
65 |
+
[
|
66 |
+
1,
|
67 |
+
3,
|
68 |
+
5
|
69 |
+
]
|
70 |
+
],
|
71 |
+
"upsample_rates": [
|
72 |
+
8,
|
73 |
+
8,
|
74 |
+
2,
|
75 |
+
2
|
76 |
+
],
|
77 |
"upsample_initial_channel": 512,
|
78 |
+
"upsample_kernel_sizes": [
|
79 |
+
16,
|
80 |
+
16,
|
81 |
+
4,
|
82 |
+
4
|
83 |
+
],
|
84 |
"n_layers_q": 3,
|
85 |
"use_spectral_norm": false,
|
86 |
"gin_channels": 256
|
87 |
+
},
|
88 |
+
"speakers": [
|
89 |
+
"nyaru",
|
90 |
+
"taffy",
|
91 |
+
"yunhao",
|
92 |
+
"jishuang",
|
93 |
+
"yilanqiu",
|
94 |
+
"opencpop"
|
95 |
+
]
|
96 |
}
|
configs/sovits_pre.json
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 2000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-9,
|
13 |
+
"batch_size": 16,
|
14 |
+
"fp16_run": true,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0
|
21 |
+
},
|
22 |
+
"data": {
|
23 |
+
"training_files": "/root/sovits/filelist/train.txt",
|
24 |
+
"validation_files": "/root/sovits/filelist/val.txt",
|
25 |
+
"text_cleaners": [
|
26 |
+
"english_cleaners2"
|
27 |
+
],
|
28 |
+
"max_wav_value": 32768.0,
|
29 |
+
"sampling_rate": 44100,
|
30 |
+
"filter_length": 2048,
|
31 |
+
"hop_length": 512,
|
32 |
+
"win_length": 2048,
|
33 |
+
"n_mel_channels": 128,
|
34 |
+
"mel_fmin": 0.0,
|
35 |
+
"mel_fmax": null,
|
36 |
+
"add_blank": true,
|
37 |
+
"n_speakers": 4,
|
38 |
+
"cleaned_text": true
|
39 |
+
},
|
40 |
+
"model": {
|
41 |
+
"inter_channels": 192,
|
42 |
+
"hidden_channels": 256,
|
43 |
+
"filter_channels": 768,
|
44 |
+
"n_heads": 2,
|
45 |
+
"n_layers": 6,
|
46 |
+
"kernel_size": 3,
|
47 |
+
"p_dropout": 0.1,
|
48 |
+
"resblock": "1",
|
49 |
+
"resblock_kernel_sizes": [
|
50 |
+
3,
|
51 |
+
7,
|
52 |
+
11
|
53 |
+
],
|
54 |
+
"resblock_dilation_sizes": [
|
55 |
+
[
|
56 |
+
1,
|
57 |
+
3,
|
58 |
+
5
|
59 |
+
],
|
60 |
+
[
|
61 |
+
1,
|
62 |
+
3,
|
63 |
+
5
|
64 |
+
],
|
65 |
+
[
|
66 |
+
1,
|
67 |
+
3,
|
68 |
+
5
|
69 |
+
]
|
70 |
+
],
|
71 |
+
"upsample_rates": [
|
72 |
+
8,
|
73 |
+
8,
|
74 |
+
4,
|
75 |
+
2
|
76 |
+
],
|
77 |
+
"upsample_initial_channel": 512,
|
78 |
+
"upsample_kernel_sizes": [
|
79 |
+
16,
|
80 |
+
16,
|
81 |
+
4,
|
82 |
+
4
|
83 |
+
],
|
84 |
+
"n_layers_q": 3,
|
85 |
+
"use_spectral_norm": false,
|
86 |
+
"gin_channels": 256
|
87 |
+
},
|
88 |
+
"speakers": [
|
89 |
+
"yilanqiu",
|
90 |
+
"opencpop",
|
91 |
+
"yunhao",
|
92 |
+
"jishuang"
|
93 |
+
]
|
94 |
+
}
|
configs/{nyarusing.json → yilanqiu.json}
RENAMED
@@ -3,11 +3,14 @@
|
|
3 |
"log_interval": 200,
|
4 |
"eval_interval": 2000,
|
5 |
"seed": 1234,
|
6 |
-
"epochs":
|
7 |
"learning_rate": 2e-4,
|
8 |
-
"betas": [
|
|
|
|
|
|
|
9 |
"eps": 1e-9,
|
10 |
-
"batch_size":
|
11 |
"fp16_run": true,
|
12 |
"lr_decay": 0.999875,
|
13 |
"segment_size": 8192,
|
@@ -17,9 +20,11 @@
|
|
17 |
"c_kl": 1.0
|
18 |
},
|
19 |
"data": {
|
20 |
-
"training_files":"/content/train.txt",
|
21 |
-
"validation_files":"/content/
|
22 |
-
"text_cleaners":[
|
|
|
|
|
23 |
"max_wav_value": 32768.0,
|
24 |
"sampling_rate": 22050,
|
25 |
"filter_length": 1024,
|
@@ -29,7 +34,7 @@
|
|
29 |
"mel_fmin": 0.0,
|
30 |
"mel_fmax": null,
|
31 |
"add_blank": true,
|
32 |
-
"n_speakers":
|
33 |
"cleaned_text": true
|
34 |
},
|
35 |
"model": {
|
@@ -41,12 +46,48 @@
|
|
41 |
"kernel_size": 3,
|
42 |
"p_dropout": 0.1,
|
43 |
"resblock": "1",
|
44 |
-
"resblock_kernel_sizes": [
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
"upsample_initial_channel": 512,
|
48 |
-
"upsample_kernel_sizes": [
|
|
|
|
|
|
|
|
|
|
|
49 |
"n_layers_q": 3,
|
50 |
-
"use_spectral_norm": false
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
}
|
|
|
3 |
"log_interval": 200,
|
4 |
"eval_interval": 2000,
|
5 |
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
"learning_rate": 2e-4,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
"eps": 1e-9,
|
13 |
+
"batch_size": 16,
|
14 |
"fp16_run": true,
|
15 |
"lr_decay": 0.999875,
|
16 |
"segment_size": 8192,
|
|
|
20 |
"c_kl": 1.0
|
21 |
},
|
22 |
"data": {
|
23 |
+
"training_files": "/root/content/qiu/train.txt",
|
24 |
+
"validation_files": "/root/content/qiu/val.txt",
|
25 |
+
"text_cleaners": [
|
26 |
+
"english_cleaners2"
|
27 |
+
],
|
28 |
"max_wav_value": 32768.0,
|
29 |
"sampling_rate": 22050,
|
30 |
"filter_length": 1024,
|
|
|
34 |
"mel_fmin": 0.0,
|
35 |
"mel_fmax": null,
|
36 |
"add_blank": true,
|
37 |
+
"n_speakers": 3,
|
38 |
"cleaned_text": true
|
39 |
},
|
40 |
"model": {
|
|
|
46 |
"kernel_size": 3,
|
47 |
"p_dropout": 0.1,
|
48 |
"resblock": "1",
|
49 |
+
"resblock_kernel_sizes": [
|
50 |
+
3,
|
51 |
+
7,
|
52 |
+
11
|
53 |
+
],
|
54 |
+
"resblock_dilation_sizes": [
|
55 |
+
[
|
56 |
+
1,
|
57 |
+
3,
|
58 |
+
5
|
59 |
+
],
|
60 |
+
[
|
61 |
+
1,
|
62 |
+
3,
|
63 |
+
5
|
64 |
+
],
|
65 |
+
[
|
66 |
+
1,
|
67 |
+
3,
|
68 |
+
5
|
69 |
+
]
|
70 |
+
],
|
71 |
+
"upsample_rates": [
|
72 |
+
8,
|
73 |
+
8,
|
74 |
+
2,
|
75 |
+
2
|
76 |
+
],
|
77 |
"upsample_initial_channel": 512,
|
78 |
+
"upsample_kernel_sizes": [
|
79 |
+
16,
|
80 |
+
16,
|
81 |
+
4,
|
82 |
+
4
|
83 |
+
],
|
84 |
"n_layers_q": 3,
|
85 |
+
"use_spectral_norm": false,
|
86 |
+
"gin_channels": 256
|
87 |
+
},
|
88 |
+
"speakers": [
|
89 |
+
"maolei",
|
90 |
+
"x",
|
91 |
+
"yilanqiu"
|
92 |
+
]
|
93 |
}
|
data_utils.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
-
import time
|
2 |
import os
|
3 |
import random
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
import torch.utils.data
|
7 |
-
import numpy as np
|
8 |
-
import commons
|
9 |
from mel_processing import spectrogram_torch
|
|
|
10 |
from utils import load_wav_to_torch, load_filepaths_and_text
|
11 |
-
from text import text_to_sequence, cleaned_text_to_sequence
|
12 |
|
13 |
|
14 |
def dropout1d(myarray, ratio=0.5):
|
@@ -59,11 +57,11 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
|
59 |
|
60 |
def get_audio_text_pair(self, audiopath_and_text):
|
61 |
# separate filename and text
|
62 |
-
audiopath, text, pitch = audiopath_and_text[0], audiopath_and_text[1],audiopath_and_text[2]
|
63 |
text = self.get_text(text)
|
64 |
spec, wav = self.get_audio(audiopath)
|
65 |
pitch = self.get_pitch(pitch)
|
66 |
-
return
|
67 |
|
68 |
def get_pitch(self, pitch):
|
69 |
|
@@ -99,7 +97,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
|
99 |
return len(self.audiopaths_and_text)
|
100 |
|
101 |
|
102 |
-
class TextAudioCollate
|
103 |
""" Zero-pads model inputs and targets
|
104 |
"""
|
105 |
|
@@ -123,7 +121,6 @@ class TextAudioCollate():
|
|
123 |
max_pitch_len = max([x[3].shape[0] for x in batch])
|
124 |
# print(batch)
|
125 |
|
126 |
-
|
127 |
text_lengths = torch.LongTensor(len(batch))
|
128 |
spec_lengths = torch.LongTensor(len(batch))
|
129 |
wav_lengths = torch.LongTensor(len(batch))
|
@@ -205,13 +202,14 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
205 |
|
206 |
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
207 |
# separate filename, speaker_id and text
|
208 |
-
audiopath, sid, text, pitch = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2],
|
|
|
209 |
text = self.get_text(text)
|
210 |
spec, wav = self.get_audio(audiopath)
|
211 |
sid = self.get_sid(sid)
|
212 |
pitch = self.get_pitch(pitch)
|
213 |
|
214 |
-
return
|
215 |
|
216 |
def get_audio(self, filename):
|
217 |
audio, sampling_rate = load_wav_to_torch(filename)
|
@@ -235,7 +233,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
235 |
soft = np.load(text)
|
236 |
text_norm = torch.FloatTensor(soft)
|
237 |
return text_norm
|
238 |
-
|
239 |
def get_pitch(self, pitch):
|
240 |
return torch.LongTensor(np.load(pitch))
|
241 |
|
@@ -250,7 +248,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
250 |
return len(self.audiopaths_sid_text)
|
251 |
|
252 |
|
253 |
-
class TextAudioSpeakerCollate
|
254 |
""" Zero-pads model inputs and targets
|
255 |
"""
|
256 |
|
@@ -310,7 +308,7 @@ class TextAudioSpeakerCollate():
|
|
310 |
|
311 |
if self.return_ids:
|
312 |
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid, ids_sorted_decreasing
|
313 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths,pitch_padded
|
314 |
|
315 |
|
316 |
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
@@ -400,7 +398,7 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
|
400 |
|
401 |
if hi > lo:
|
402 |
mid = (hi + lo) // 2
|
403 |
-
if self.boundaries[mid] < x
|
404 |
return mid
|
405 |
elif x <= self.boundaries[mid]:
|
406 |
return self._bisect(x, lo, mid)
|
|
|
|
|
1 |
import os
|
2 |
import random
|
3 |
+
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
import torch.utils.data
|
|
|
|
|
7 |
from mel_processing import spectrogram_torch
|
8 |
+
|
9 |
from utils import load_wav_to_torch, load_filepaths_and_text
|
|
|
10 |
|
11 |
|
12 |
def dropout1d(myarray, ratio=0.5):
|
|
|
57 |
|
58 |
def get_audio_text_pair(self, audiopath_and_text):
|
59 |
# separate filename and text
|
60 |
+
audiopath, text, pitch = audiopath_and_text[0], audiopath_and_text[1], audiopath_and_text[2]
|
61 |
text = self.get_text(text)
|
62 |
spec, wav = self.get_audio(audiopath)
|
63 |
pitch = self.get_pitch(pitch)
|
64 |
+
return text, spec, wav, pitch
|
65 |
|
66 |
def get_pitch(self, pitch):
|
67 |
|
|
|
97 |
return len(self.audiopaths_and_text)
|
98 |
|
99 |
|
100 |
+
class TextAudioCollate:
|
101 |
""" Zero-pads model inputs and targets
|
102 |
"""
|
103 |
|
|
|
121 |
max_pitch_len = max([x[3].shape[0] for x in batch])
|
122 |
# print(batch)
|
123 |
|
|
|
124 |
text_lengths = torch.LongTensor(len(batch))
|
125 |
spec_lengths = torch.LongTensor(len(batch))
|
126 |
wav_lengths = torch.LongTensor(len(batch))
|
|
|
202 |
|
203 |
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
204 |
# separate filename, speaker_id and text
|
205 |
+
audiopath, sid, text, pitch = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2], \
|
206 |
+
audiopath_sid_text[3]
|
207 |
text = self.get_text(text)
|
208 |
spec, wav = self.get_audio(audiopath)
|
209 |
sid = self.get_sid(sid)
|
210 |
pitch = self.get_pitch(pitch)
|
211 |
|
212 |
+
return text, spec, wav, pitch, sid
|
213 |
|
214 |
def get_audio(self, filename):
|
215 |
audio, sampling_rate = load_wav_to_torch(filename)
|
|
|
233 |
soft = np.load(text)
|
234 |
text_norm = torch.FloatTensor(soft)
|
235 |
return text_norm
|
236 |
+
|
237 |
def get_pitch(self, pitch):
|
238 |
return torch.LongTensor(np.load(pitch))
|
239 |
|
|
|
248 |
return len(self.audiopaths_sid_text)
|
249 |
|
250 |
|
251 |
+
class TextAudioSpeakerCollate:
|
252 |
""" Zero-pads model inputs and targets
|
253 |
"""
|
254 |
|
|
|
308 |
|
309 |
if self.return_ids:
|
310 |
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid, ids_sorted_decreasing
|
311 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid
|
312 |
|
313 |
|
314 |
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
|
|
398 |
|
399 |
if hi > lo:
|
400 |
mid = (hi + lo) // 2
|
401 |
+
if self.boundaries[mid] < x <= self.boundaries[mid + 1]:
|
402 |
return mid
|
403 |
elif x <= self.boundaries[mid]:
|
404 |
return self._bisect(x, lo, mid)
|
hubert.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e82e7d079df05fe3aa535f6f7d42d309bdae1d2a53324e2b2386c56721f4f649
|
3 |
+
size 378435957
|
hubert_model.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import random
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as t_func
|
8 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
9 |
+
|
10 |
+
|
11 |
+
class Hubert(nn.Module):
|
12 |
+
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
|
13 |
+
super().__init__()
|
14 |
+
self._mask = mask
|
15 |
+
self.feature_extractor = FeatureExtractor()
|
16 |
+
self.feature_projection = FeatureProjection()
|
17 |
+
self.positional_embedding = PositionalConvEmbedding()
|
18 |
+
self.norm = nn.LayerNorm(768)
|
19 |
+
self.dropout = nn.Dropout(0.1)
|
20 |
+
self.encoder = TransformerEncoder(
|
21 |
+
nn.TransformerEncoderLayer(
|
22 |
+
768, 12, 3072, activation="gelu", batch_first=True
|
23 |
+
),
|
24 |
+
12,
|
25 |
+
)
|
26 |
+
self.proj = nn.Linear(768, 256)
|
27 |
+
|
28 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
|
29 |
+
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
|
30 |
+
|
31 |
+
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
32 |
+
mask = None
|
33 |
+
if self.training and self._mask:
|
34 |
+
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
|
35 |
+
x[mask] = self.masked_spec_embed.to(x.dtype)
|
36 |
+
return x, mask
|
37 |
+
|
38 |
+
def encode(
|
39 |
+
self, x: torch.Tensor, layer: Optional[int] = None
|
40 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
41 |
+
x = self.feature_extractor(x)
|
42 |
+
x = self.feature_projection(x.transpose(1, 2))
|
43 |
+
x, mask = self.mask(x)
|
44 |
+
x = x + self.positional_embedding(x)
|
45 |
+
x = self.dropout(self.norm(x))
|
46 |
+
x = self.encoder(x, output_layer=layer)
|
47 |
+
return x, mask
|
48 |
+
|
49 |
+
def logits(self, x: torch.Tensor) -> torch.Tensor:
|
50 |
+
logits = torch.cosine_similarity(
|
51 |
+
x.unsqueeze(2),
|
52 |
+
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
|
53 |
+
dim=-1,
|
54 |
+
)
|
55 |
+
return logits / 0.1
|
56 |
+
|
57 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
58 |
+
x, mask = self.encode(x)
|
59 |
+
x = self.proj(x)
|
60 |
+
logits = self.logits(x)
|
61 |
+
return logits, mask
|
62 |
+
|
63 |
+
|
64 |
+
class HubertSoft(Hubert):
|
65 |
+
def __init__(self):
|
66 |
+
super().__init__()
|
67 |
+
|
68 |
+
@torch.inference_mode()
|
69 |
+
def units(self, wav: torch.Tensor) -> torch.Tensor:
|
70 |
+
wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
|
71 |
+
x, _ = self.encode(wav)
|
72 |
+
return self.proj(x)
|
73 |
+
|
74 |
+
|
75 |
+
class FeatureExtractor(nn.Module):
|
76 |
+
def __init__(self):
|
77 |
+
super().__init__()
|
78 |
+
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
|
79 |
+
self.norm0 = nn.GroupNorm(512, 512)
|
80 |
+
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
81 |
+
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
82 |
+
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
83 |
+
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
84 |
+
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
85 |
+
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
86 |
+
|
87 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
88 |
+
x = t_func.gelu(self.norm0(self.conv0(x)))
|
89 |
+
x = t_func.gelu(self.conv1(x))
|
90 |
+
x = t_func.gelu(self.conv2(x))
|
91 |
+
x = t_func.gelu(self.conv3(x))
|
92 |
+
x = t_func.gelu(self.conv4(x))
|
93 |
+
x = t_func.gelu(self.conv5(x))
|
94 |
+
x = t_func.gelu(self.conv6(x))
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class FeatureProjection(nn.Module):
|
99 |
+
def __init__(self):
|
100 |
+
super().__init__()
|
101 |
+
self.norm = nn.LayerNorm(512)
|
102 |
+
self.projection = nn.Linear(512, 768)
|
103 |
+
self.dropout = nn.Dropout(0.1)
|
104 |
+
|
105 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
106 |
+
x = self.norm(x)
|
107 |
+
x = self.projection(x)
|
108 |
+
x = self.dropout(x)
|
109 |
+
return x
|
110 |
+
|
111 |
+
|
112 |
+
class PositionalConvEmbedding(nn.Module):
|
113 |
+
def __init__(self):
|
114 |
+
super().__init__()
|
115 |
+
self.conv = nn.Conv1d(
|
116 |
+
768,
|
117 |
+
768,
|
118 |
+
kernel_size=128,
|
119 |
+
padding=128 // 2,
|
120 |
+
groups=16,
|
121 |
+
)
|
122 |
+
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
123 |
+
|
124 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
125 |
+
x = self.conv(x.transpose(1, 2))
|
126 |
+
x = t_func.gelu(x[:, :, :-1])
|
127 |
+
return x.transpose(1, 2)
|
128 |
+
|
129 |
+
|
130 |
+
class TransformerEncoder(nn.Module):
|
131 |
+
def __init__(
|
132 |
+
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
|
133 |
+
) -> None:
|
134 |
+
super(TransformerEncoder, self).__init__()
|
135 |
+
self.layers = nn.ModuleList(
|
136 |
+
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
|
137 |
+
)
|
138 |
+
self.num_layers = num_layers
|
139 |
+
|
140 |
+
def forward(
|
141 |
+
self,
|
142 |
+
src: torch.Tensor,
|
143 |
+
mask: torch.Tensor = None,
|
144 |
+
src_key_padding_mask: torch.Tensor = None,
|
145 |
+
output_layer: Optional[int] = None,
|
146 |
+
) -> torch.Tensor:
|
147 |
+
output = src
|
148 |
+
for layer in self.layers[:output_layer]:
|
149 |
+
output = layer(
|
150 |
+
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
|
151 |
+
)
|
152 |
+
return output
|
153 |
+
|
154 |
+
|
155 |
+
def _compute_mask(
|
156 |
+
shape: Tuple[int, int],
|
157 |
+
mask_prob: float,
|
158 |
+
mask_length: int,
|
159 |
+
device: torch.device,
|
160 |
+
min_masks: int = 0,
|
161 |
+
) -> torch.Tensor:
|
162 |
+
batch_size, sequence_length = shape
|
163 |
+
|
164 |
+
if mask_length < 1:
|
165 |
+
raise ValueError("`mask_length` has to be bigger than 0.")
|
166 |
+
|
167 |
+
if mask_length > sequence_length:
|
168 |
+
raise ValueError(
|
169 |
+
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
|
170 |
+
)
|
171 |
+
|
172 |
+
# compute number of masked spans in batch
|
173 |
+
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
|
174 |
+
num_masked_spans = max(num_masked_spans, min_masks)
|
175 |
+
|
176 |
+
# make sure num masked indices <= sequence_length
|
177 |
+
if num_masked_spans * mask_length > sequence_length:
|
178 |
+
num_masked_spans = sequence_length // mask_length
|
179 |
+
|
180 |
+
# SpecAugment mask to fill
|
181 |
+
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
|
182 |
+
|
183 |
+
# uniform distribution to sample from, make sure that offset samples are < sequence_length
|
184 |
+
uniform_dist = torch.ones(
|
185 |
+
(batch_size, sequence_length - (mask_length - 1)), device=device
|
186 |
+
)
|
187 |
+
|
188 |
+
# get random indices to mask
|
189 |
+
mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
|
190 |
+
|
191 |
+
# expand masked indices to masked spans
|
192 |
+
mask_indices = (
|
193 |
+
mask_indices.unsqueeze(dim=-1)
|
194 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
195 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
196 |
+
)
|
197 |
+
offsets = (
|
198 |
+
torch.arange(mask_length, device=device)[None, None, :]
|
199 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
200 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
201 |
+
)
|
202 |
+
mask_idxs = mask_indices + offsets
|
203 |
+
|
204 |
+
# scatter indices to mask
|
205 |
+
mask = mask.scatter(1, mask_idxs, True)
|
206 |
+
|
207 |
+
return mask
|
208 |
+
|
209 |
+
|
210 |
+
def hubert_soft(
|
211 |
+
path: str
|
212 |
+
) -> HubertSoft:
|
213 |
+
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
|
214 |
+
Args:
|
215 |
+
path (str): path of a pretrained model
|
216 |
+
"""
|
217 |
+
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
218 |
+
hubert = HubertSoft()
|
219 |
+
checkpoint = torch.load(path)
|
220 |
+
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
|
221 |
+
hubert.load_state_dict(checkpoint)
|
222 |
+
hubert.eval().to(dev)
|
223 |
+
return hubert
|
infer_tool.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import soundfile
|
7 |
+
import torch
|
8 |
+
import torchaudio
|
9 |
+
|
10 |
+
import hubert_model
|
11 |
+
import utils
|
12 |
+
from models import SynthesizerTrn
|
13 |
+
from preprocess_wave import FeatureInput
|
14 |
+
|
15 |
+
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
|
18 |
+
def timeit(func):
|
19 |
+
def run(*args, **kwargs):
|
20 |
+
t = time.time()
|
21 |
+
res = func(*args, **kwargs)
|
22 |
+
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
|
23 |
+
return res
|
24 |
+
|
25 |
+
return run
|
26 |
+
|
27 |
+
|
28 |
+
def get_end_file(dir_path, end):
|
29 |
+
file_lists = []
|
30 |
+
for root, dirs, files in os.walk(dir_path):
|
31 |
+
files = [f for f in files if f[0] != '.']
|
32 |
+
dirs[:] = [d for d in dirs if d[0] != '.']
|
33 |
+
for f_file in files:
|
34 |
+
if f_file.endswith(end):
|
35 |
+
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
|
36 |
+
return file_lists
|
37 |
+
|
38 |
+
|
39 |
+
def load_model(model_path, config_path):
|
40 |
+
# 获取模型配置
|
41 |
+
hps_ms = utils.get_hparams_from_file(config_path)
|
42 |
+
n_g_ms = SynthesizerTrn(
|
43 |
+
178,
|
44 |
+
hps_ms.data.filter_length // 2 + 1,
|
45 |
+
hps_ms.train.segment_size // hps_ms.data.hop_length,
|
46 |
+
n_speakers=hps_ms.data.n_speakers,
|
47 |
+
**hps_ms.model)
|
48 |
+
_ = utils.load_checkpoint(model_path, n_g_ms, None)
|
49 |
+
_ = n_g_ms.eval().to(dev)
|
50 |
+
# 加载hubert
|
51 |
+
hubert_soft = hubert_model.hubert_soft(get_end_file("./", "pt")[0])
|
52 |
+
feature_input = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length)
|
53 |
+
return n_g_ms, hubert_soft, feature_input, hps_ms
|
54 |
+
|
55 |
+
|
56 |
+
def resize2d_f0(x, target_len):
|
57 |
+
source = np.array(x)
|
58 |
+
source[source < 0.001] = np.nan
|
59 |
+
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
|
60 |
+
source)
|
61 |
+
res = np.nan_to_num(target)
|
62 |
+
return res
|
63 |
+
|
64 |
+
|
65 |
+
def get_units(audio, sr, hubert_soft):
|
66 |
+
source = torchaudio.functional.resample(audio, sr, 16000)
|
67 |
+
source = source.unsqueeze(0).to(dev)
|
68 |
+
with torch.inference_mode():
|
69 |
+
units = hubert_soft.units(source)
|
70 |
+
return units
|
71 |
+
|
72 |
+
|
73 |
+
def transcribe(source_path, length, transform, feature_input):
|
74 |
+
feature_pit = feature_input.compute_f0(source_path)
|
75 |
+
feature_pit = feature_pit * 2 ** (transform / 12)
|
76 |
+
feature_pit = resize2d_f0(feature_pit, length)
|
77 |
+
coarse_pit = feature_input.coarse_f0(feature_pit)
|
78 |
+
return coarse_pit
|
79 |
+
|
80 |
+
|
81 |
+
def get_unit_pitch(in_path, tran, hubert_soft, feature_input):
|
82 |
+
audio, sample_rate = torchaudio.load(in_path)
|
83 |
+
soft = get_units(audio, sample_rate, hubert_soft).squeeze(0).cpu().numpy()
|
84 |
+
input_pitch = transcribe(in_path, soft.shape[0], tran, feature_input)
|
85 |
+
return soft, input_pitch
|
86 |
+
|
87 |
+
|
88 |
+
def clean_pitch(input_pitch):
|
89 |
+
num_nan = np.sum(input_pitch == 1)
|
90 |
+
if num_nan / len(input_pitch) > 0.9:
|
91 |
+
input_pitch[input_pitch != 1] = 1
|
92 |
+
return input_pitch
|
93 |
+
|
94 |
+
|
95 |
+
def plt_pitch(input_pitch):
|
96 |
+
input_pitch = input_pitch.astype(float)
|
97 |
+
input_pitch[input_pitch == 1] = np.nan
|
98 |
+
return input_pitch
|
99 |
+
|
100 |
+
|
101 |
+
def f0_to_pitch(ff):
|
102 |
+
f0_pitch = 69 + 12 * np.log2(ff / 440)
|
103 |
+
return f0_pitch
|
104 |
+
|
105 |
+
|
106 |
+
def f0_plt(in_path, out_path, tran, hubert_soft, feature_input):
|
107 |
+
s1, input_pitch = get_unit_pitch(in_path, tran, hubert_soft, feature_input)
|
108 |
+
s2, output_pitch = get_unit_pitch(out_path, 0, hubert_soft, feature_input)
|
109 |
+
plt.clf()
|
110 |
+
plt.plot(plt_pitch(input_pitch), color="#66ccff")
|
111 |
+
plt.plot(plt_pitch(output_pitch), color="orange")
|
112 |
+
plt.savefig("temp.jpg")
|
113 |
+
|
114 |
+
|
115 |
+
def calc_error(in_path, out_path, tran, feature_input):
|
116 |
+
input_pitch = feature_input.compute_f0(in_path)
|
117 |
+
output_pitch = feature_input.compute_f0(out_path)
|
118 |
+
sum_y = []
|
119 |
+
if np.sum(input_pitch == 0) / len(input_pitch) > 0.9:
|
120 |
+
mistake, var_take = 0, 0
|
121 |
+
else:
|
122 |
+
for i in range(min(len(input_pitch), len(output_pitch))):
|
123 |
+
if input_pitch[i] > 0 and output_pitch[i] > 0:
|
124 |
+
sum_y.append(abs(f0_to_pitch(output_pitch[i]) - (f0_to_pitch(input_pitch[i]) + tran)))
|
125 |
+
num_y = 0
|
126 |
+
for x in sum_y:
|
127 |
+
num_y += x
|
128 |
+
len_y = len(sum_y) if len(sum_y) else 1
|
129 |
+
mistake = round(float(num_y / len_y), 2)
|
130 |
+
var_take = round(float(np.std(sum_y, ddof=1)), 2)
|
131 |
+
return mistake, var_take
|
132 |
+
|
133 |
+
|
134 |
+
def infer(source_path, speaker_id, tran, net_g_ms, hubert_soft, feature_input):
|
135 |
+
sid = torch.LongTensor([int(speaker_id)]).to(dev)
|
136 |
+
soft, pitch = get_unit_pitch(source_path, tran, hubert_soft, feature_input)
|
137 |
+
pitch = torch.LongTensor(clean_pitch(pitch)).unsqueeze(0).to(dev)
|
138 |
+
stn_tst = torch.FloatTensor(soft)
|
139 |
+
with torch.no_grad():
|
140 |
+
x_tst = stn_tst.unsqueeze(0).to(dev)
|
141 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
|
142 |
+
audio = \
|
143 |
+
net_g_ms.infer(x_tst, x_tst_lengths, pitch, sid=sid, noise_scale=0.3, noise_scale_w=0.5,
|
144 |
+
length_scale=1)[0][
|
145 |
+
0, 0].data.float().cpu().numpy()
|
146 |
+
return audio, audio.shape[-1]
|
147 |
+
|
148 |
+
|
149 |
+
def del_temp_wav(path_data):
|
150 |
+
for i in get_end_file(path_data, "wav"): # os.listdir(path_data)#返回一个列表,里面是当前目录下面的所有东西的相对路径
|
151 |
+
os.remove(i)
|
152 |
+
|
153 |
+
|
154 |
+
def format_wav(audio_path, tar_sample):
|
155 |
+
raw_audio, raw_sample_rate = torchaudio.load(audio_path)
|
156 |
+
tar_audio = torchaudio.transforms.Resample(orig_freq=raw_sample_rate, new_freq=tar_sample)(raw_audio)[0]
|
157 |
+
soundfile.write(audio_path[:-4] + ".wav", tar_audio, tar_sample)
|
158 |
+
return tar_audio, tar_sample
|
159 |
+
|
160 |
+
|
161 |
+
def fill_a_to_b(a, b):
|
162 |
+
if len(a) < len(b):
|
163 |
+
for _ in range(0, len(b) - len(a)):
|
164 |
+
a.append(a[0])
|
165 |
+
|
166 |
+
|
167 |
+
def mkdir(paths: list):
|
168 |
+
for path in paths:
|
169 |
+
if not os.path.exists(path):
|
170 |
+
os.mkdir(path)
|
losses.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch.nn import functional as F
|
3 |
-
|
4 |
-
import commons
|
5 |
-
|
6 |
-
|
7 |
-
def feature_loss(fmap_r, fmap_g):
|
8 |
-
loss = 0
|
9 |
-
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
-
for rl, gl in zip(dr, dg):
|
11 |
-
rl = rl.float().detach()
|
12 |
-
gl = gl.float()
|
13 |
-
loss += torch.mean(torch.abs(rl - gl))
|
14 |
-
|
15 |
-
return loss * 2
|
16 |
-
|
17 |
-
|
18 |
-
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
-
loss = 0
|
20 |
-
r_losses = []
|
21 |
-
g_losses = []
|
22 |
-
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
-
dr = dr.float()
|
24 |
-
dg = dg.float()
|
25 |
-
r_loss = torch.mean((1-dr)**2)
|
26 |
-
g_loss = torch.mean(dg**2)
|
27 |
-
loss += (r_loss + g_loss)
|
28 |
-
r_losses.append(r_loss.item())
|
29 |
-
g_losses.append(g_loss.item())
|
30 |
-
|
31 |
-
return loss, r_losses, g_losses
|
32 |
-
|
33 |
-
|
34 |
-
def generator_loss(disc_outputs):
|
35 |
-
loss = 0
|
36 |
-
gen_losses = []
|
37 |
-
for dg in disc_outputs:
|
38 |
-
dg = dg.float()
|
39 |
-
l = torch.mean((1-dg)**2)
|
40 |
-
gen_losses.append(l)
|
41 |
-
loss += l
|
42 |
-
|
43 |
-
return loss, gen_losses
|
44 |
-
|
45 |
-
|
46 |
-
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
-
"""
|
48 |
-
z_p, logs_q: [b, h, t_t]
|
49 |
-
m_p, logs_p: [b, h, t_t]
|
50 |
-
"""
|
51 |
-
z_p = z_p.float()
|
52 |
-
logs_q = logs_q.float()
|
53 |
-
m_p = m_p.float()
|
54 |
-
logs_p = logs_p.float()
|
55 |
-
z_mask = z_mask.float()
|
56 |
-
|
57 |
-
kl = logs_p - logs_q - 0.5
|
58 |
-
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
59 |
-
kl = torch.sum(kl * z_mask)
|
60 |
-
l = kl / torch.sum(z_mask)
|
61 |
-
return l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mel_processing.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import os
|
3 |
-
import random
|
4 |
-
import torch
|
5 |
-
from torch import nn
|
6 |
-
import torch.nn.functional as F
|
7 |
-
import torch.utils.data
|
8 |
-
import numpy as np
|
9 |
-
import librosa
|
10 |
-
import librosa.util as librosa_util
|
11 |
-
from librosa.util import normalize, pad_center, tiny
|
12 |
-
from scipy.signal import get_window
|
13 |
-
from scipy.io.wavfile import read
|
14 |
-
from librosa.filters import mel as librosa_mel_fn
|
15 |
-
|
16 |
-
MAX_WAV_VALUE = 32768.0
|
17 |
-
|
18 |
-
|
19 |
-
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
-
"""
|
21 |
-
PARAMS
|
22 |
-
------
|
23 |
-
C: compression factor
|
24 |
-
"""
|
25 |
-
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
-
|
27 |
-
|
28 |
-
def dynamic_range_decompression_torch(x, C=1):
|
29 |
-
"""
|
30 |
-
PARAMS
|
31 |
-
------
|
32 |
-
C: compression factor used to compress
|
33 |
-
"""
|
34 |
-
return torch.exp(x) / C
|
35 |
-
|
36 |
-
|
37 |
-
def spectral_normalize_torch(magnitudes):
|
38 |
-
output = dynamic_range_compression_torch(magnitudes)
|
39 |
-
return output
|
40 |
-
|
41 |
-
|
42 |
-
def spectral_de_normalize_torch(magnitudes):
|
43 |
-
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
-
return output
|
45 |
-
|
46 |
-
|
47 |
-
mel_basis = {}
|
48 |
-
hann_window = {}
|
49 |
-
|
50 |
-
|
51 |
-
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
-
if torch.min(y) < -1.:
|
53 |
-
print('min value is ', torch.min(y))
|
54 |
-
if torch.max(y) > 1.:
|
55 |
-
print('max value is ', torch.max(y))
|
56 |
-
|
57 |
-
global hann_window
|
58 |
-
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
-
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
-
if wnsize_dtype_device not in hann_window:
|
61 |
-
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
-
|
63 |
-
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
-
y = y.squeeze(1)
|
65 |
-
|
66 |
-
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
-
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
68 |
-
|
69 |
-
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
-
return spec
|
71 |
-
|
72 |
-
|
73 |
-
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
-
global mel_basis
|
75 |
-
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
-
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
-
if fmax_dtype_device not in mel_basis:
|
78 |
-
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
79 |
-
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
-
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
-
spec = spectral_normalize_torch(spec)
|
82 |
-
return spec
|
83 |
-
|
84 |
-
|
85 |
-
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
-
if torch.min(y) < -1.:
|
87 |
-
print('min value is ', torch.min(y))
|
88 |
-
if torch.max(y) > 1.:
|
89 |
-
print('max value is ', torch.max(y))
|
90 |
-
|
91 |
-
global mel_basis, hann_window
|
92 |
-
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
-
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
-
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
-
if fmax_dtype_device not in mel_basis:
|
96 |
-
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
97 |
-
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
-
if wnsize_dtype_device not in hann_window:
|
99 |
-
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
-
|
101 |
-
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
-
y = y.squeeze(1)
|
103 |
-
|
104 |
-
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
-
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
106 |
-
|
107 |
-
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
-
|
109 |
-
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
-
spec = spectral_normalize_torch(spec)
|
111 |
-
|
112 |
-
return spec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models.py
CHANGED
@@ -1,16 +1,15 @@
|
|
1 |
-
import copy
|
2 |
import math
|
|
|
|
|
3 |
import torch
|
4 |
from torch import nn
|
|
|
5 |
from torch.nn import functional as F
|
6 |
-
import
|
|
|
|
|
7 |
import commons
|
8 |
import modules
|
9 |
-
import attentions
|
10 |
-
import monotonic_align
|
11 |
-
|
12 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
from commons import init_weights, get_padding
|
15 |
|
16 |
|
@@ -492,8 +491,8 @@ class SynthesizerTrn(nn.Module):
|
|
492 |
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
493 |
gin_channels=gin_channels)
|
494 |
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
495 |
-
self.pitch_net = PitchPredictor(n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers,
|
496 |
-
|
497 |
|
498 |
if use_sdp:
|
499 |
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
@@ -503,75 +502,8 @@ class SynthesizerTrn(nn.Module):
|
|
503 |
if n_speakers > 1:
|
504 |
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
505 |
|
506 |
-
def forward(self, x, x_lengths, y, y_lengths, pitch, sid=None):
|
507 |
-
|
508 |
-
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, pitch)
|
509 |
-
# print(f"x: {x.shape}")
|
510 |
-
pred_pitch, pitch_embedding = self.pitch_net(x, x_mask)
|
511 |
-
# print(f"pred_pitch: {pred_pitch.shape}")
|
512 |
-
# print(f"pitch_embedding: {pitch_embedding.shape}")
|
513 |
-
x = x + pitch_embedding
|
514 |
-
lf0 = torch.unsqueeze(pred_pitch, -1)
|
515 |
-
gt_lf0 = torch.log(440 * (2 ** ((pitch.float() - 69) / 12)))
|
516 |
-
gt_lf0 = gt_lf0.to(x.device)
|
517 |
-
x_mask_sum = torch.sum(x_mask)
|
518 |
-
lf0 = lf0.squeeze()
|
519 |
-
l_pitch = torch.sum((gt_lf0 - lf0) ** 2, 1) / x_mask_sum
|
520 |
-
|
521 |
-
if self.n_speakers > 0:
|
522 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
523 |
-
else:
|
524 |
-
g = None
|
525 |
-
|
526 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
527 |
-
# print(f"z: {z.shape}")
|
528 |
-
|
529 |
-
z_p = self.flow(z, y_mask, g=g)
|
530 |
-
# print(f"z_p: {z_p.shape}")
|
531 |
-
|
532 |
-
with torch.no_grad():
|
533 |
-
# negative cross-entropy
|
534 |
-
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
535 |
-
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
536 |
-
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2),
|
537 |
-
s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
538 |
-
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
539 |
-
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
540 |
-
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
541 |
-
|
542 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
543 |
-
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
544 |
-
|
545 |
-
w = attn.sum(2)
|
546 |
-
if self.use_sdp:
|
547 |
-
l_length = self.dp(x, x_mask, w, g=g)
|
548 |
-
l_length = l_length / torch.sum(x_mask)
|
549 |
-
else:
|
550 |
-
logw_ = torch.log(w + 1e-6) * x_mask
|
551 |
-
logw = self.dp(x, x_mask, g=g)
|
552 |
-
l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging
|
553 |
-
|
554 |
-
# expand prior
|
555 |
-
# print()
|
556 |
-
# print(f"attn: {attn.shape}")
|
557 |
-
# print(f"m_p: {m_p.shape}")
|
558 |
-
# print(f"logs_p: {logs_p.shape}")
|
559 |
-
|
560 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
561 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
562 |
-
# print(f"m_p: {m_p.shape}")
|
563 |
-
# print(f"logs_p: {logs_p.shape}")
|
564 |
-
|
565 |
-
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
566 |
-
# print(f"z_slice: {z_slice.shape}")
|
567 |
-
|
568 |
-
o = self.dec(z_slice, g=g)
|
569 |
-
return o, l_length, l_pitch, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
570 |
-
|
571 |
def infer(self, x, x_lengths, pitch, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
572 |
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, pitch)
|
573 |
-
pred_pitch, pitch_embedding = self.pitch_net(x, x_mask)
|
574 |
-
x = x + pitch_embedding
|
575 |
if self.n_speakers > 0:
|
576 |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
577 |
else:
|
@@ -622,4 +554,3 @@ class SynthesizerTrn(nn.Module):
|
|
622 |
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
623 |
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
624 |
return o_hat, y_mask, (z, z_p, z_hat)
|
625 |
-
|
|
|
|
|
1 |
import math
|
2 |
+
import math
|
3 |
+
|
4 |
import torch
|
5 |
from torch import nn
|
6 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
7 |
from torch.nn import functional as F
|
8 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
9 |
+
|
10 |
+
import attentions
|
11 |
import commons
|
12 |
import modules
|
|
|
|
|
|
|
|
|
|
|
13 |
from commons import init_weights, get_padding
|
14 |
|
15 |
|
|
|
491 |
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
492 |
gin_channels=gin_channels)
|
493 |
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
494 |
+
# self.pitch_net = PitchPredictor(n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers,
|
495 |
+
# kernel_size, p_dropout)
|
496 |
|
497 |
if use_sdp:
|
498 |
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
|
|
502 |
if n_speakers > 1:
|
503 |
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
504 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
505 |
def infer(self, x, x_lengths, pitch, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
506 |
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, pitch)
|
|
|
|
|
507 |
if self.n_speakers > 0:
|
508 |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
509 |
else:
|
|
|
554 |
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
555 |
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
556 |
return o_hat, y_mask, (z, z_p, z_hat)
|
|
modules.py
CHANGED
@@ -1,187 +1,184 @@
|
|
1 |
-
import copy
|
2 |
import math
|
3 |
-
|
4 |
-
import scipy
|
5 |
import torch
|
6 |
from torch import nn
|
7 |
-
from torch.nn import
|
8 |
-
|
9 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
|
12 |
import commons
|
13 |
from commons import init_weights, get_padding
|
14 |
from transforms import piecewise_rational_quadratic_transform
|
15 |
|
16 |
-
|
17 |
LRELU_SLOPE = 0.1
|
18 |
|
19 |
|
20 |
class LayerNorm(nn.Module):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
-
self
|
27 |
-
|
|
|
|
|
28 |
|
29 |
-
def forward(self, x):
|
30 |
-
x = x.transpose(1, -1)
|
31 |
-
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
-
return x.transpose(1, -1)
|
33 |
|
34 |
-
|
35 |
class ConvReluNorm(nn.Module):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
|
70 |
class DDSConv(nn.Module):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
109 |
|
110 |
|
111 |
class WN(torch.nn.Module):
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
|
186 |
|
187 |
class ResBlock1(torch.nn.Module):
|
@@ -209,11 +206,11 @@ class ResBlock1(torch.nn.Module):
|
|
209 |
|
210 |
def forward(self, x, x_mask=None):
|
211 |
for c1, c2 in zip(self.convs1, self.convs2):
|
212 |
-
xt =
|
213 |
if x_mask is not None:
|
214 |
xt = xt * x_mask
|
215 |
xt = c1(xt)
|
216 |
-
xt =
|
217 |
if x_mask is not None:
|
218 |
xt = xt * x_mask
|
219 |
xt = c2(xt)
|
@@ -242,7 +239,7 @@ class ResBlock2(torch.nn.Module):
|
|
242 |
|
243 |
def forward(self, x, x_mask=None):
|
244 |
for c in self.convs:
|
245 |
-
xt =
|
246 |
if x_mask is not None:
|
247 |
xt = xt * x_mask
|
248 |
xt = c(xt)
|
@@ -257,134 +254,135 @@ class ResBlock2(torch.nn.Module):
|
|
257 |
|
258 |
|
259 |
class Log(nn.Module):
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
|
270 |
class Flip(nn.Module):
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
|
279 |
|
280 |
class ElementwiseAffine(nn.Module):
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
|
297 |
|
298 |
class ResidualCouplingLayer(nn.Module):
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
344 |
|
345 |
|
346 |
class ConvFlow(nn.Module):
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
|
|
|
|
1 |
import math
|
2 |
+
|
|
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
+
from torch.nn import Conv1d
|
6 |
+
from torch.nn import functional as t_func
|
|
|
7 |
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
|
9 |
import commons
|
10 |
from commons import init_weights, get_padding
|
11 |
from transforms import piecewise_rational_quadratic_transform
|
12 |
|
|
|
13 |
LRELU_SLOPE = 0.1
|
14 |
|
15 |
|
16 |
class LayerNorm(nn.Module):
|
17 |
+
def __init__(self, channels, eps=1e-5):
|
18 |
+
super().__init__()
|
19 |
+
self.channels = channels
|
20 |
+
self.eps = eps
|
21 |
+
|
22 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
23 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
24 |
|
25 |
+
def forward(self, x):
|
26 |
+
x = x.transpose(1, -1)
|
27 |
+
x = t_func.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
28 |
+
return x.transpose(1, -1)
|
29 |
|
|
|
|
|
|
|
|
|
30 |
|
|
|
31 |
class ConvReluNorm(nn.Module):
|
32 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
33 |
+
super().__init__()
|
34 |
+
self.in_channels = in_channels
|
35 |
+
self.hidden_channels = hidden_channels
|
36 |
+
self.out_channels = out_channels
|
37 |
+
self.kernel_size = kernel_size
|
38 |
+
self.n_layers = n_layers
|
39 |
+
self.p_dropout = p_dropout
|
40 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
41 |
+
|
42 |
+
self.conv_layers = nn.ModuleList()
|
43 |
+
self.norm_layers = nn.ModuleList()
|
44 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
45 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
46 |
+
self.relu_drop = nn.Sequential(
|
47 |
+
nn.ReLU(),
|
48 |
+
nn.Dropout(p_dropout))
|
49 |
+
for _ in range(n_layers - 1):
|
50 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
51 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
52 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
53 |
+
self.proj.weight.data.zero_()
|
54 |
+
self.proj.bias.data.zero_()
|
55 |
+
|
56 |
+
def forward(self, x, x_mask):
|
57 |
+
x_org = x
|
58 |
+
for i in range(self.n_layers):
|
59 |
+
x = self.conv_layers[i](x * x_mask)
|
60 |
+
x = self.norm_layers[i](x)
|
61 |
+
x = self.relu_drop(x)
|
62 |
+
x = x_org + self.proj(x)
|
63 |
+
return x * x_mask
|
64 |
|
65 |
|
66 |
class DDSConv(nn.Module):
|
67 |
+
"""
|
68 |
+
Dialted and Depth-Separable Convolution
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
72 |
+
super().__init__()
|
73 |
+
self.channels = channels
|
74 |
+
self.kernel_size = kernel_size
|
75 |
+
self.n_layers = n_layers
|
76 |
+
self.p_dropout = p_dropout
|
77 |
+
|
78 |
+
self.drop = nn.Dropout(p_dropout)
|
79 |
+
self.convs_sep = nn.ModuleList()
|
80 |
+
self.convs_1x1 = nn.ModuleList()
|
81 |
+
self.norms_1 = nn.ModuleList()
|
82 |
+
self.norms_2 = nn.ModuleList()
|
83 |
+
for i in range(n_layers):
|
84 |
+
dilation = kernel_size ** i
|
85 |
+
padding = (kernel_size * dilation - dilation) // 2
|
86 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
87 |
+
groups=channels, dilation=dilation, padding=padding
|
88 |
+
))
|
89 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
90 |
+
self.norms_1.append(LayerNorm(channels))
|
91 |
+
self.norms_2.append(LayerNorm(channels))
|
92 |
+
|
93 |
+
def forward(self, x, x_mask, g=None):
|
94 |
+
if g is not None:
|
95 |
+
x = x + g
|
96 |
+
for i in range(self.n_layers):
|
97 |
+
y = self.convs_sep[i](x * x_mask)
|
98 |
+
y = self.norms_1[i](y)
|
99 |
+
y = t_func.gelu(y)
|
100 |
+
y = self.convs_1x1[i](y)
|
101 |
+
y = self.norms_2[i](y)
|
102 |
+
y = t_func.gelu(y)
|
103 |
+
y = self.drop(y)
|
104 |
+
x = x + y
|
105 |
+
return x * x_mask
|
106 |
|
107 |
|
108 |
class WN(torch.nn.Module):
|
109 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
110 |
+
super(WN, self).__init__()
|
111 |
+
assert (kernel_size % 2 == 1)
|
112 |
+
self.hidden_channels = hidden_channels
|
113 |
+
self.kernel_size = kernel_size,
|
114 |
+
self.dilation_rate = dilation_rate
|
115 |
+
self.n_layers = n_layers
|
116 |
+
self.gin_channels = gin_channels
|
117 |
+
self.p_dropout = p_dropout
|
118 |
+
|
119 |
+
self.in_layers = torch.nn.ModuleList()
|
120 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
121 |
+
self.drop = nn.Dropout(p_dropout)
|
122 |
+
|
123 |
+
if gin_channels != 0:
|
124 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
|
125 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
126 |
+
|
127 |
+
for i in range(n_layers):
|
128 |
+
dilation = dilation_rate ** i
|
129 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
130 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size,
|
131 |
+
dilation=dilation, padding=padding)
|
132 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
133 |
+
self.in_layers.append(in_layer)
|
134 |
+
|
135 |
+
# last one is not necessary
|
136 |
+
if i < n_layers - 1:
|
137 |
+
res_skip_channels = 2 * hidden_channels
|
138 |
+
else:
|
139 |
+
res_skip_channels = hidden_channels
|
140 |
+
|
141 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
142 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
143 |
+
self.res_skip_layers.append(res_skip_layer)
|
144 |
+
|
145 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
146 |
+
output = torch.zeros_like(x)
|
147 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
148 |
+
|
149 |
+
if g is not None:
|
150 |
+
g = self.cond_layer(g)
|
151 |
+
|
152 |
+
for i in range(self.n_layers):
|
153 |
+
x_in = self.in_layers[i](x)
|
154 |
+
if g is not None:
|
155 |
+
cond_offset = i * 2 * self.hidden_channels
|
156 |
+
g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
|
157 |
+
else:
|
158 |
+
g_l = torch.zeros_like(x_in)
|
159 |
+
|
160 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
161 |
+
x_in,
|
162 |
+
g_l,
|
163 |
+
n_channels_tensor)
|
164 |
+
acts = self.drop(acts)
|
165 |
+
|
166 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
167 |
+
if i < self.n_layers - 1:
|
168 |
+
res_acts = res_skip_acts[:, :self.hidden_channels, :]
|
169 |
+
x = (x + res_acts) * x_mask
|
170 |
+
output = output + res_skip_acts[:, self.hidden_channels:, :]
|
171 |
+
else:
|
172 |
+
output = output + res_skip_acts
|
173 |
+
return output * x_mask
|
174 |
+
|
175 |
+
def remove_weight_norm(self):
|
176 |
+
if self.gin_channels != 0:
|
177 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
178 |
+
for l in self.in_layers:
|
179 |
+
torch.nn.utils.remove_weight_norm(l)
|
180 |
+
for l in self.res_skip_layers:
|
181 |
+
torch.nn.utils.remove_weight_norm(l)
|
182 |
|
183 |
|
184 |
class ResBlock1(torch.nn.Module):
|
|
|
206 |
|
207 |
def forward(self, x, x_mask=None):
|
208 |
for c1, c2 in zip(self.convs1, self.convs2):
|
209 |
+
xt = t_func.leaky_relu(x, LRELU_SLOPE)
|
210 |
if x_mask is not None:
|
211 |
xt = xt * x_mask
|
212 |
xt = c1(xt)
|
213 |
+
xt = t_func.leaky_relu(xt, LRELU_SLOPE)
|
214 |
if x_mask is not None:
|
215 |
xt = xt * x_mask
|
216 |
xt = c2(xt)
|
|
|
239 |
|
240 |
def forward(self, x, x_mask=None):
|
241 |
for c in self.convs:
|
242 |
+
xt = t_func.leaky_relu(x, LRELU_SLOPE)
|
243 |
if x_mask is not None:
|
244 |
xt = xt * x_mask
|
245 |
xt = c(xt)
|
|
|
254 |
|
255 |
|
256 |
class Log(nn.Module):
|
257 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
258 |
+
if not reverse:
|
259 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
260 |
+
logdet = torch.sum(-y, [1, 2])
|
261 |
+
return y, logdet
|
262 |
+
else:
|
263 |
+
x = torch.exp(x) * x_mask
|
264 |
+
return x
|
265 |
+
|
266 |
|
267 |
class Flip(nn.Module):
|
268 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
269 |
+
x = torch.flip(x, [1])
|
270 |
+
if not reverse:
|
271 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
272 |
+
return x, logdet
|
273 |
+
else:
|
274 |
+
return x
|
275 |
|
276 |
|
277 |
class ElementwiseAffine(nn.Module):
|
278 |
+
def __init__(self, channels):
|
279 |
+
super().__init__()
|
280 |
+
self.channels = channels
|
281 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
282 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
283 |
+
|
284 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
285 |
+
if not reverse:
|
286 |
+
y = self.m + torch.exp(self.logs) * x
|
287 |
+
y = y * x_mask
|
288 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
289 |
+
return y, logdet
|
290 |
+
else:
|
291 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
292 |
+
return x
|
293 |
|
294 |
|
295 |
class ResidualCouplingLayer(nn.Module):
|
296 |
+
def __init__(self,
|
297 |
+
channels,
|
298 |
+
hidden_channels,
|
299 |
+
kernel_size,
|
300 |
+
dilation_rate,
|
301 |
+
n_layers,
|
302 |
+
p_dropout=0,
|
303 |
+
gin_channels=0,
|
304 |
+
mean_only=False):
|
305 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
306 |
+
super().__init__()
|
307 |
+
self.channels = channels
|
308 |
+
self.hidden_channels = hidden_channels
|
309 |
+
self.kernel_size = kernel_size
|
310 |
+
self.dilation_rate = dilation_rate
|
311 |
+
self.n_layers = n_layers
|
312 |
+
self.half_channels = channels // 2
|
313 |
+
self.mean_only = mean_only
|
314 |
+
|
315 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
316 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout,
|
317 |
+
gin_channels=gin_channels)
|
318 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
319 |
+
self.post.weight.data.zero_()
|
320 |
+
self.post.bias.data.zero_()
|
321 |
+
|
322 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
323 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
324 |
+
h = self.pre(x0) * x_mask
|
325 |
+
h = self.enc(h, x_mask, g=g)
|
326 |
+
stats = self.post(h) * x_mask
|
327 |
+
if not self.mean_only:
|
328 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
329 |
+
else:
|
330 |
+
m = stats
|
331 |
+
logs = torch.zeros_like(m)
|
332 |
+
|
333 |
+
if not reverse:
|
334 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
335 |
+
x = torch.cat([x0, x1], 1)
|
336 |
+
logdet = torch.sum(logs, [1, 2])
|
337 |
+
return x, logdet
|
338 |
+
else:
|
339 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
340 |
+
x = torch.cat([x0, x1], 1)
|
341 |
+
return x
|
342 |
|
343 |
|
344 |
class ConvFlow(nn.Module):
|
345 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
346 |
+
super().__init__()
|
347 |
+
self.in_channels = in_channels
|
348 |
+
self.filter_channels = filter_channels
|
349 |
+
self.kernel_size = kernel_size
|
350 |
+
self.n_layers = n_layers
|
351 |
+
self.num_bins = num_bins
|
352 |
+
self.tail_bound = tail_bound
|
353 |
+
self.half_channels = in_channels // 2
|
354 |
+
|
355 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
356 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
357 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
358 |
+
self.proj.weight.data.zero_()
|
359 |
+
self.proj.bias.data.zero_()
|
360 |
+
|
361 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
362 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
363 |
+
h = self.pre(x0)
|
364 |
+
h = self.convs(h, x_mask, g=g)
|
365 |
+
h = self.proj(h) * x_mask
|
366 |
+
|
367 |
+
b, c, t = x0.shape
|
368 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
369 |
+
|
370 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
371 |
+
unnormalized_heights = h[..., self.num_bins:2 * self.num_bins] / math.sqrt(self.filter_channels)
|
372 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
373 |
+
|
374 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
375 |
+
unnormalized_widths,
|
376 |
+
unnormalized_heights,
|
377 |
+
unnormalized_derivatives,
|
378 |
+
inverse=reverse,
|
379 |
+
tails='linear',
|
380 |
+
tail_bound=self.tail_bound
|
381 |
+
)
|
382 |
+
|
383 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
384 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
385 |
+
if not reverse:
|
386 |
+
return x, logdet
|
387 |
+
else:
|
388 |
+
return x
|
monotonic_align/__init__.py
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
from .monotonic_align.core import maximum_path_c
|
4 |
-
|
5 |
-
|
6 |
-
def maximum_path(neg_cent, mask):
|
7 |
-
""" Cython optimized version.
|
8 |
-
neg_cent: [b, t_t, t_s]
|
9 |
-
mask: [b, t_t, t_s]
|
10 |
-
"""
|
11 |
-
device = neg_cent.device
|
12 |
-
dtype = neg_cent.dtype
|
13 |
-
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
|
14 |
-
path = np.zeros(neg_cent.shape, dtype=np.int32)
|
15 |
-
|
16 |
-
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
|
17 |
-
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
|
18 |
-
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
|
19 |
-
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
monotonic_align/core.pyx
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
cimport cython
|
2 |
-
from cython.parallel import prange
|
3 |
-
|
4 |
-
|
5 |
-
@cython.boundscheck(False)
|
6 |
-
@cython.wraparound(False)
|
7 |
-
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
|
8 |
-
cdef int x
|
9 |
-
cdef int y
|
10 |
-
cdef float v_prev
|
11 |
-
cdef float v_cur
|
12 |
-
cdef float tmp
|
13 |
-
cdef int index = t_x - 1
|
14 |
-
|
15 |
-
for y in range(t_y):
|
16 |
-
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
17 |
-
if x == y:
|
18 |
-
v_cur = max_neg_val
|
19 |
-
else:
|
20 |
-
v_cur = value[y-1, x]
|
21 |
-
if x == 0:
|
22 |
-
if y == 0:
|
23 |
-
v_prev = 0.
|
24 |
-
else:
|
25 |
-
v_prev = max_neg_val
|
26 |
-
else:
|
27 |
-
v_prev = value[y-1, x-1]
|
28 |
-
value[y, x] += max(v_prev, v_cur)
|
29 |
-
|
30 |
-
for y in range(t_y - 1, -1, -1):
|
31 |
-
path[y, index] = 1
|
32 |
-
if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
|
33 |
-
index = index - 1
|
34 |
-
|
35 |
-
|
36 |
-
@cython.boundscheck(False)
|
37 |
-
@cython.wraparound(False)
|
38 |
-
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
|
39 |
-
cdef int b = paths.shape[0]
|
40 |
-
cdef int i
|
41 |
-
for i in prange(b, nogil=True):
|
42 |
-
maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
monotonic_align/setup.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
from distutils.core import setup
|
2 |
-
from Cython.Build import cythonize
|
3 |
-
import numpy
|
4 |
-
|
5 |
-
setup(
|
6 |
-
name = 'monotonic_align',
|
7 |
-
ext_modules = cythonize("core.pyx"),
|
8 |
-
include_dirs=[numpy.get_include()]
|
9 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import text
|
3 |
-
from utils import load_filepaths_and_text
|
4 |
-
|
5 |
-
if __name__ == '__main__':
|
6 |
-
parser = argparse.ArgumentParser()
|
7 |
-
parser.add_argument("--out_extension", default="cleaned")
|
8 |
-
parser.add_argument("--text_index", default=1, type=int)
|
9 |
-
parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
|
10 |
-
parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
|
11 |
-
|
12 |
-
args = parser.parse_args()
|
13 |
-
|
14 |
-
|
15 |
-
for filelist in args.filelists:
|
16 |
-
print("START:", filelist)
|
17 |
-
filepaths_and_text = load_filepaths_and_text(filelist)
|
18 |
-
for i in range(len(filepaths_and_text)):
|
19 |
-
original_text = filepaths_and_text[i][args.text_index]
|
20 |
-
cleaned_text = text._clean_text(original_text, args.text_cleaners)
|
21 |
-
filepaths_and_text[i][args.text_index] = cleaned_text
|
22 |
-
|
23 |
-
new_filelist = filelist + "." + args.out_extension
|
24 |
-
with open(new_filelist, "w", encoding="utf-8") as f:
|
25 |
-
f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess_wave.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import os
|
|
|
2 |
import librosa
|
3 |
-
import pyworld
|
4 |
-
import utils
|
5 |
import numpy as np
|
|
|
6 |
from scipy.io import wavfile
|
7 |
|
|
|
|
|
8 |
|
9 |
class FeatureInput(object):
|
10 |
def __init__(self, samplerate=16000, hop_size=160):
|
@@ -35,7 +37,7 @@ class FeatureInput(object):
|
|
35 |
def coarse_f0(self, f0):
|
36 |
f0_mel = 1127 * np.log(1 + f0 / 700)
|
37 |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
|
38 |
-
|
39 |
) / (self.f0_mel_max - self.f0_mel_min) + 1
|
40 |
|
41 |
# use 0 or 1
|
@@ -52,7 +54,7 @@ class FeatureInput(object):
|
|
52 |
def coarse_f0_ts(self, f0):
|
53 |
f0_mel = 1127 * (1 + f0 / 700).log()
|
54 |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
|
55 |
-
|
56 |
) / (self.f0_mel_max - self.f0_mel_min) + 1
|
57 |
|
58 |
# use 0 or 1
|
|
|
1 |
import os
|
2 |
+
|
3 |
import librosa
|
|
|
|
|
4 |
import numpy as np
|
5 |
+
import pyworld
|
6 |
from scipy.io import wavfile
|
7 |
|
8 |
+
import utils
|
9 |
+
|
10 |
|
11 |
class FeatureInput(object):
|
12 |
def __init__(self, samplerate=16000, hop_size=160):
|
|
|
37 |
def coarse_f0(self, f0):
|
38 |
f0_mel = 1127 * np.log(1 + f0 / 700)
|
39 |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
|
40 |
+
self.f0_bin - 2
|
41 |
) / (self.f0_mel_max - self.f0_mel_min) + 1
|
42 |
|
43 |
# use 0 or 1
|
|
|
54 |
def coarse_f0_ts(self, f0):
|
55 |
f0_mel = 1127 * (1 + f0 / 700).log()
|
56 |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
|
57 |
+
self.f0_bin - 2
|
58 |
) / (self.f0_mel_max - self.f0_mel_min) + 1
|
59 |
|
60 |
# use 0 or 1
|
requirements.txt
CHANGED
@@ -4,9 +4,13 @@ matplotlib==3.3.1
|
|
4 |
numpy==1.18.5
|
5 |
phonemizer==2.2.1
|
6 |
scipy==1.5.2
|
7 |
-
tensorboard==2.3.0
|
8 |
torch
|
9 |
torchvision
|
10 |
Unidecode==1.1.1
|
11 |
torchaudio
|
12 |
pyworld
|
|
|
|
|
|
|
|
|
|
|
|
4 |
numpy==1.18.5
|
5 |
phonemizer==2.2.1
|
6 |
scipy==1.5.2
|
|
|
7 |
torch
|
8 |
torchvision
|
9 |
Unidecode==1.1.1
|
10 |
torchaudio
|
11 |
pyworld
|
12 |
+
scipy
|
13 |
+
keras
|
14 |
+
mir-eval
|
15 |
+
pretty-midi
|
16 |
+
pydub
|
slicer.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
import time
|
3 |
+
from argparse import ArgumentParser
|
4 |
+
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import soundfile
|
8 |
+
from scipy.ndimage import maximum_filter1d, uniform_filter1d
|
9 |
+
|
10 |
+
|
11 |
+
def timeit(func):
|
12 |
+
def run(*args, **kwargs):
|
13 |
+
t = time.time()
|
14 |
+
res = func(*args, **kwargs)
|
15 |
+
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
|
16 |
+
return res
|
17 |
+
|
18 |
+
return run
|
19 |
+
|
20 |
+
|
21 |
+
# @timeit
|
22 |
+
def _window_maximum(arr, win_sz):
|
23 |
+
return maximum_filter1d(arr, size=win_sz)[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
|
24 |
+
|
25 |
+
|
26 |
+
# @timeit
|
27 |
+
def _window_rms(arr, win_sz):
|
28 |
+
filtered = np.sqrt(uniform_filter1d(np.power(arr, 2), win_sz) - np.power(uniform_filter1d(arr, win_sz), 2))
|
29 |
+
return filtered[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
|
30 |
+
|
31 |
+
|
32 |
+
def level2db(levels, eps=1e-12):
|
33 |
+
return 20 * np.log10(np.clip(levels, a_min=eps, a_max=1))
|
34 |
+
|
35 |
+
|
36 |
+
def _apply_slice(audio, begin, end):
|
37 |
+
if len(audio.shape) > 1:
|
38 |
+
return audio[:, begin: end]
|
39 |
+
else:
|
40 |
+
return audio[begin: end]
|
41 |
+
|
42 |
+
|
43 |
+
class Slicer:
|
44 |
+
def __init__(self,
|
45 |
+
sr: int,
|
46 |
+
db_threshold: float = -40,
|
47 |
+
min_length: int = 5000,
|
48 |
+
win_l: int = 300,
|
49 |
+
win_s: int = 20,
|
50 |
+
max_silence_kept: int = 500):
|
51 |
+
self.db_threshold = db_threshold
|
52 |
+
self.min_samples = round(sr * min_length / 1000)
|
53 |
+
self.win_ln = round(sr * win_l / 1000)
|
54 |
+
self.win_sn = round(sr * win_s / 1000)
|
55 |
+
self.max_silence = round(sr * max_silence_kept / 1000)
|
56 |
+
if not self.min_samples >= self.win_ln >= self.win_sn:
|
57 |
+
raise ValueError('The following condition must be satisfied: min_length >= win_l >= win_s')
|
58 |
+
if not self.max_silence >= self.win_sn:
|
59 |
+
raise ValueError('The following condition must be satisfied: max_silence_kept >= win_s')
|
60 |
+
|
61 |
+
@timeit
|
62 |
+
def slice(self, audio):
|
63 |
+
if len(audio.shape) > 1:
|
64 |
+
samples = librosa.to_mono(audio)
|
65 |
+
else:
|
66 |
+
samples = audio
|
67 |
+
if samples.shape[0] <= self.min_samples:
|
68 |
+
return [audio]
|
69 |
+
# get absolute amplitudes
|
70 |
+
abs_amp = np.abs(samples - np.mean(samples))
|
71 |
+
# calculate local maximum with large window
|
72 |
+
win_max_db = level2db(_window_maximum(abs_amp, win_sz=self.win_ln))
|
73 |
+
sil_tags = []
|
74 |
+
left = right = 0
|
75 |
+
while right < win_max_db.shape[0]:
|
76 |
+
if win_max_db[right] < self.db_threshold:
|
77 |
+
right += 1
|
78 |
+
elif left == right:
|
79 |
+
left += 1
|
80 |
+
right += 1
|
81 |
+
else:
|
82 |
+
if left == 0:
|
83 |
+
split_loc_l = left
|
84 |
+
else:
|
85 |
+
sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
|
86 |
+
rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
|
87 |
+
split_win_l = left + np.argmin(rms_db_left)
|
88 |
+
split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
|
89 |
+
if len(sil_tags) != 0 and split_loc_l - sil_tags[-1][1] < self.min_samples and right < win_max_db.shape[
|
90 |
+
0] - 1:
|
91 |
+
right += 1
|
92 |
+
left = right
|
93 |
+
continue
|
94 |
+
if right == win_max_db.shape[0] - 1:
|
95 |
+
split_loc_r = right + self.win_ln
|
96 |
+
else:
|
97 |
+
sil_right_n = min(self.max_silence, (right + self.win_ln - left) // 2)
|
98 |
+
rms_db_right = level2db(_window_rms(samples[right + self.win_ln - sil_right_n: right + self.win_ln],
|
99 |
+
win_sz=self.win_sn))
|
100 |
+
split_win_r = right + self.win_ln - sil_right_n + np.argmin(rms_db_right)
|
101 |
+
split_loc_r = split_win_r + np.argmin(abs_amp[split_win_r: split_win_r + self.win_sn])
|
102 |
+
sil_tags.append((split_loc_l, split_loc_r))
|
103 |
+
right += 1
|
104 |
+
left = right
|
105 |
+
if left != right:
|
106 |
+
sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
|
107 |
+
rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
|
108 |
+
split_win_l = left + np.argmin(rms_db_left)
|
109 |
+
split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
|
110 |
+
sil_tags.append((split_loc_l, samples.shape[0]))
|
111 |
+
if len(sil_tags) == 0:
|
112 |
+
return [audio]
|
113 |
+
else:
|
114 |
+
chunks = []
|
115 |
+
for i in range(0, len(sil_tags)):
|
116 |
+
chunks.append(int((sil_tags[i][0] + sil_tags[i][1]) / 2))
|
117 |
+
return chunks
|
118 |
+
|
119 |
+
|
120 |
+
def main():
|
121 |
+
parser = ArgumentParser()
|
122 |
+
parser.add_argument('audio', type=str, help='The audio to be sliced')
|
123 |
+
parser.add_argument('--out_name', type=str, help='Output directory of the sliced audio clips')
|
124 |
+
parser.add_argument('--out', type=str, help='Output directory of the sliced audio clips')
|
125 |
+
parser.add_argument('--db_thresh', type=float, required=False, default=-40,
|
126 |
+
help='The dB threshold for silence detection')
|
127 |
+
parser.add_argument('--min_len', type=int, required=False, default=5000,
|
128 |
+
help='The minimum milliseconds required for each sliced audio clip')
|
129 |
+
parser.add_argument('--win_l', type=int, required=False, default=300,
|
130 |
+
help='Size of the large sliding window, presented in milliseconds')
|
131 |
+
parser.add_argument('--win_s', type=int, required=False, default=20,
|
132 |
+
help='Size of the small sliding window, presented in milliseconds')
|
133 |
+
parser.add_argument('--max_sil_kept', type=int, required=False, default=500,
|
134 |
+
help='The maximum silence length kept around the sliced audio, presented in milliseconds')
|
135 |
+
args = parser.parse_args()
|
136 |
+
out = args.out
|
137 |
+
if out is None:
|
138 |
+
out = os.path.dirname(os.path.abspath(args.audio))
|
139 |
+
audio, sr = librosa.load(args.audio, sr=None)
|
140 |
+
slicer = Slicer(
|
141 |
+
sr=sr,
|
142 |
+
db_threshold=args.db_thresh,
|
143 |
+
min_length=args.min_len,
|
144 |
+
win_l=args.win_l,
|
145 |
+
win_s=args.win_s,
|
146 |
+
max_silence_kept=args.max_sil_kept
|
147 |
+
)
|
148 |
+
chunks = slicer.slice(audio)
|
149 |
+
if not os.path.exists(args.out):
|
150 |
+
os.makedirs(args.out)
|
151 |
+
start = 0
|
152 |
+
end_id = 0
|
153 |
+
for i, chunk in enumerate(chunks):
|
154 |
+
end = chunk
|
155 |
+
soundfile.write(os.path.join(out, f'%s-%s.wav' % (args.out_name, str(i).zfill(2))), audio[start:end], sr)
|
156 |
+
start = end
|
157 |
+
end_id = i + 1
|
158 |
+
soundfile.write(os.path.join(out, f'%s-%s.wav' % (args.out_name, str(end_id).zfill(2))), audio[start:len(audio)],
|
159 |
+
sr)
|
160 |
+
|
161 |
+
|
162 |
+
if __name__ == '__main__':
|
163 |
+
main()
|
text/LICENSE
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
Copyright (c) 2017 Keith Ito
|
2 |
-
|
3 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
-
of this software and associated documentation files (the "Software"), to deal
|
5 |
-
in the Software without restriction, including without limitation the rights
|
6 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
-
copies of the Software, and to permit persons to whom the Software is
|
8 |
-
furnished to do so, subject to the following conditions:
|
9 |
-
|
10 |
-
The above copyright notice and this permission notice shall be included in
|
11 |
-
all copies or substantial portions of the Software.
|
12 |
-
|
13 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
19 |
-
THE SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text/__init__.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
""" from https://github.com/keithito/tacotron """
|
2 |
-
from text import cleaners
|
3 |
-
from text.symbols import symbols
|
4 |
-
|
5 |
-
|
6 |
-
# Mappings from symbol to numeric ID and vice versa:
|
7 |
-
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
8 |
-
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
9 |
-
|
10 |
-
|
11 |
-
def text_to_sequence(text, cleaner_names):
|
12 |
-
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
13 |
-
Args:
|
14 |
-
text: string to convert to a sequence
|
15 |
-
cleaner_names: names of the cleaner functions to run the text through
|
16 |
-
Returns:
|
17 |
-
List of integers corresponding to the symbols in the text
|
18 |
-
'''
|
19 |
-
sequence = []
|
20 |
-
|
21 |
-
clean_text = _clean_text(text, cleaner_names)
|
22 |
-
for symbol in clean_text:
|
23 |
-
symbol_id = _symbol_to_id[symbol]
|
24 |
-
sequence += [symbol_id]
|
25 |
-
return sequence
|
26 |
-
|
27 |
-
|
28 |
-
def cleaned_text_to_sequence(cleaned_text):
|
29 |
-
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
30 |
-
Args:
|
31 |
-
text: string to convert to a sequence
|
32 |
-
Returns:
|
33 |
-
List of integers corresponding to the symbols in the text
|
34 |
-
'''
|
35 |
-
sequence = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
36 |
-
return sequence
|
37 |
-
|
38 |
-
|
39 |
-
def sequence_to_text(sequence):
|
40 |
-
'''Converts a sequence of IDs back to a string'''
|
41 |
-
result = ''
|
42 |
-
for symbol_id in sequence:
|
43 |
-
s = _id_to_symbol[symbol_id]
|
44 |
-
result += s
|
45 |
-
return result
|
46 |
-
|
47 |
-
|
48 |
-
def _clean_text(text, cleaner_names):
|
49 |
-
for name in cleaner_names:
|
50 |
-
cleaner = getattr(cleaners, name)
|
51 |
-
if not cleaner:
|
52 |
-
raise Exception('Unknown cleaner: %s' % name)
|
53 |
-
text = cleaner(text)
|
54 |
-
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text/cleaners.py
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
""" from https://github.com/keithito/tacotron """
|
2 |
-
|
3 |
-
'''
|
4 |
-
Cleaners are transformations that run over the input text at both training and eval time.
|
5 |
-
|
6 |
-
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
7 |
-
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
8 |
-
1. "english_cleaners" for English text
|
9 |
-
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
10 |
-
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
11 |
-
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
12 |
-
the symbols in symbols.py to match your data).
|
13 |
-
'''
|
14 |
-
|
15 |
-
import re
|
16 |
-
from unidecode import unidecode
|
17 |
-
from phonemizer import phonemize
|
18 |
-
|
19 |
-
|
20 |
-
# Regular expression matching whitespace:
|
21 |
-
_whitespace_re = re.compile(r'\s+')
|
22 |
-
|
23 |
-
# List of (regular expression, replacement) pairs for abbreviations:
|
24 |
-
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
|
25 |
-
('mrs', 'misess'),
|
26 |
-
('mr', 'mister'),
|
27 |
-
('dr', 'doctor'),
|
28 |
-
('st', 'saint'),
|
29 |
-
('co', 'company'),
|
30 |
-
('jr', 'junior'),
|
31 |
-
('maj', 'major'),
|
32 |
-
('gen', 'general'),
|
33 |
-
('drs', 'doctors'),
|
34 |
-
('rev', 'reverend'),
|
35 |
-
('lt', 'lieutenant'),
|
36 |
-
('hon', 'honorable'),
|
37 |
-
('sgt', 'sergeant'),
|
38 |
-
('capt', 'captain'),
|
39 |
-
('esq', 'esquire'),
|
40 |
-
('ltd', 'limited'),
|
41 |
-
('col', 'colonel'),
|
42 |
-
('ft', 'fort'),
|
43 |
-
]]
|
44 |
-
|
45 |
-
|
46 |
-
def expand_abbreviations(text):
|
47 |
-
for regex, replacement in _abbreviations:
|
48 |
-
text = re.sub(regex, replacement, text)
|
49 |
-
return text
|
50 |
-
|
51 |
-
|
52 |
-
def expand_numbers(text):
|
53 |
-
return normalize_numbers(text)
|
54 |
-
|
55 |
-
|
56 |
-
def lowercase(text):
|
57 |
-
return text.lower()
|
58 |
-
|
59 |
-
|
60 |
-
def collapse_whitespace(text):
|
61 |
-
return re.sub(_whitespace_re, ' ', text)
|
62 |
-
|
63 |
-
|
64 |
-
def convert_to_ascii(text):
|
65 |
-
return unidecode(text)
|
66 |
-
|
67 |
-
|
68 |
-
def basic_cleaners(text):
|
69 |
-
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
|
70 |
-
text = lowercase(text)
|
71 |
-
text = collapse_whitespace(text)
|
72 |
-
return text
|
73 |
-
|
74 |
-
|
75 |
-
def transliteration_cleaners(text):
|
76 |
-
'''Pipeline for non-English text that transliterates to ASCII.'''
|
77 |
-
text = convert_to_ascii(text)
|
78 |
-
text = lowercase(text)
|
79 |
-
text = collapse_whitespace(text)
|
80 |
-
return text
|
81 |
-
|
82 |
-
|
83 |
-
def english_cleaners(text):
|
84 |
-
'''Pipeline for English text, including abbreviation expansion.'''
|
85 |
-
text = convert_to_ascii(text)
|
86 |
-
text = lowercase(text)
|
87 |
-
text = expand_abbreviations(text)
|
88 |
-
phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
|
89 |
-
phonemes = collapse_whitespace(phonemes)
|
90 |
-
return phonemes
|
91 |
-
|
92 |
-
|
93 |
-
def english_cleaners2(text):
|
94 |
-
'''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''
|
95 |
-
text = convert_to_ascii(text)
|
96 |
-
text = lowercase(text)
|
97 |
-
text = expand_abbreviations(text)
|
98 |
-
phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
|
99 |
-
phonemes = collapse_whitespace(phonemes)
|
100 |
-
return phonemes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text/symbols.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
""" from https://github.com/keithito/tacotron """
|
2 |
-
|
3 |
-
'''
|
4 |
-
Defines the set of symbols used in text input to the model.
|
5 |
-
'''
|
6 |
-
_pad = '_'
|
7 |
-
_punctuation = ';:,.!?¡¿—…"«»“” '
|
8 |
-
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
9 |
-
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
10 |
-
|
11 |
-
|
12 |
-
# Export all symbols:
|
13 |
-
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
14 |
-
|
15 |
-
# Special symbol ids
|
16 |
-
SPACE_ID = symbols.index(" ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train.py
DELETED
@@ -1,295 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import argparse
|
4 |
-
import itertools
|
5 |
-
import math
|
6 |
-
import torch
|
7 |
-
from torch import nn, optim
|
8 |
-
from torch.nn import functional as F
|
9 |
-
from torch.utils.data import DataLoader
|
10 |
-
from torch.utils.tensorboard import SummaryWriter
|
11 |
-
import torch.multiprocessing as mp
|
12 |
-
import torch.distributed as dist
|
13 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
14 |
-
from torch.cuda.amp import autocast, GradScaler
|
15 |
-
|
16 |
-
import librosa
|
17 |
-
import logging
|
18 |
-
|
19 |
-
logging.getLogger('numba').setLevel(logging.WARNING)
|
20 |
-
|
21 |
-
import commons
|
22 |
-
import utils
|
23 |
-
from data_utils import (
|
24 |
-
TextAudioLoader,
|
25 |
-
TextAudioCollate,
|
26 |
-
DistributedBucketSampler
|
27 |
-
)
|
28 |
-
from models import (
|
29 |
-
SynthesizerTrn,
|
30 |
-
MultiPeriodDiscriminator,
|
31 |
-
)
|
32 |
-
from losses import (
|
33 |
-
generator_loss,
|
34 |
-
discriminator_loss,
|
35 |
-
feature_loss,
|
36 |
-
kl_loss
|
37 |
-
)
|
38 |
-
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
39 |
-
from text.symbols import symbols
|
40 |
-
|
41 |
-
|
42 |
-
torch.backends.cudnn.benchmark = True
|
43 |
-
global_step = 0
|
44 |
-
|
45 |
-
|
46 |
-
def main():
|
47 |
-
"""Assume Single Node Multi GPUs Training Only"""
|
48 |
-
assert torch.cuda.is_available(), "CPU training is not allowed."
|
49 |
-
|
50 |
-
n_gpus = torch.cuda.device_count()
|
51 |
-
os.environ['MASTER_ADDR'] = 'localhost'
|
52 |
-
os.environ['MASTER_PORT'] = '25565'
|
53 |
-
|
54 |
-
hps = utils.get_hparams()
|
55 |
-
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
56 |
-
|
57 |
-
|
58 |
-
def run(rank, n_gpus, hps):
|
59 |
-
global global_step
|
60 |
-
if rank == 0:
|
61 |
-
logger = utils.get_logger(hps.model_dir)
|
62 |
-
logger.info(hps)
|
63 |
-
utils.check_git_hash(hps.model_dir)
|
64 |
-
writer = SummaryWriter(log_dir=hps.model_dir)
|
65 |
-
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
66 |
-
|
67 |
-
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
|
68 |
-
torch.manual_seed(hps.train.seed)
|
69 |
-
torch.cuda.set_device(rank)
|
70 |
-
|
71 |
-
train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
|
72 |
-
train_sampler = DistributedBucketSampler(
|
73 |
-
train_dataset,
|
74 |
-
hps.train.batch_size,
|
75 |
-
[32,300,400,500,600,700,800,900,1000],
|
76 |
-
num_replicas=n_gpus,
|
77 |
-
rank=rank,
|
78 |
-
shuffle=True)
|
79 |
-
collate_fn = TextAudioCollate()
|
80 |
-
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
|
81 |
-
collate_fn=collate_fn, batch_sampler=train_sampler)
|
82 |
-
if rank == 0:
|
83 |
-
eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
|
84 |
-
eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
|
85 |
-
batch_size=hps.train.batch_size, pin_memory=True,
|
86 |
-
drop_last=False, collate_fn=collate_fn)
|
87 |
-
|
88 |
-
net_g = SynthesizerTrn(
|
89 |
-
len(symbols),
|
90 |
-
hps.data.filter_length // 2 + 1,
|
91 |
-
hps.train.segment_size // hps.data.hop_length,
|
92 |
-
**hps.model).cuda(rank)
|
93 |
-
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
94 |
-
optim_g = torch.optim.AdamW(
|
95 |
-
net_g.parameters(),
|
96 |
-
hps.train.learning_rate,
|
97 |
-
betas=hps.train.betas,
|
98 |
-
eps=hps.train.eps)
|
99 |
-
optim_d = torch.optim.AdamW(
|
100 |
-
net_d.parameters(),
|
101 |
-
hps.train.learning_rate,
|
102 |
-
betas=hps.train.betas,
|
103 |
-
eps=hps.train.eps)
|
104 |
-
net_g = DDP(net_g, device_ids=[rank])
|
105 |
-
net_d = DDP(net_d, device_ids=[rank])
|
106 |
-
|
107 |
-
try:
|
108 |
-
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
|
109 |
-
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
|
110 |
-
global_step = (epoch_str - 1) * len(train_loader)
|
111 |
-
except:
|
112 |
-
epoch_str = 1
|
113 |
-
global_step = 0
|
114 |
-
|
115 |
-
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
|
116 |
-
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
|
117 |
-
|
118 |
-
scaler = GradScaler(enabled=hps.train.fp16_run)
|
119 |
-
|
120 |
-
for epoch in range(epoch_str, hps.train.epochs + 1):
|
121 |
-
if rank==0:
|
122 |
-
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
|
123 |
-
else:
|
124 |
-
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
|
125 |
-
scheduler_g.step()
|
126 |
-
scheduler_d.step()
|
127 |
-
|
128 |
-
|
129 |
-
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
130 |
-
net_g, net_d = nets
|
131 |
-
optim_g, optim_d = optims
|
132 |
-
scheduler_g, scheduler_d = schedulers
|
133 |
-
train_loader, eval_loader = loaders
|
134 |
-
if writers is not None:
|
135 |
-
writer, writer_eval = writers
|
136 |
-
|
137 |
-
train_loader.batch_sampler.set_epoch(epoch)
|
138 |
-
global global_step
|
139 |
-
|
140 |
-
net_g.train()
|
141 |
-
net_d.train()
|
142 |
-
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch) in enumerate(train_loader):
|
143 |
-
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
|
144 |
-
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
145 |
-
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
|
146 |
-
pitch = pitch.cuda(rank, non_blocking=True)
|
147 |
-
with autocast(enabled=hps.train.fp16_run):
|
148 |
-
y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
|
149 |
-
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, pitch)
|
150 |
-
|
151 |
-
mel = spec_to_mel_torch(
|
152 |
-
spec,
|
153 |
-
hps.data.filter_length,
|
154 |
-
hps.data.n_mel_channels,
|
155 |
-
hps.data.sampling_rate,
|
156 |
-
hps.data.mel_fmin,
|
157 |
-
hps.data.mel_fmax)
|
158 |
-
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
159 |
-
y_hat_mel = mel_spectrogram_torch(
|
160 |
-
y_hat.squeeze(1),
|
161 |
-
hps.data.filter_length,
|
162 |
-
hps.data.n_mel_channels,
|
163 |
-
hps.data.sampling_rate,
|
164 |
-
hps.data.hop_length,
|
165 |
-
hps.data.win_length,
|
166 |
-
hps.data.mel_fmin,
|
167 |
-
hps.data.mel_fmax
|
168 |
-
)
|
169 |
-
|
170 |
-
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
171 |
-
|
172 |
-
# Discriminator
|
173 |
-
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
174 |
-
with autocast(enabled=False):
|
175 |
-
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
176 |
-
loss_disc_all = loss_disc
|
177 |
-
optim_d.zero_grad()
|
178 |
-
scaler.scale(loss_disc_all).backward()
|
179 |
-
scaler.unscale_(optim_d)
|
180 |
-
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
181 |
-
scaler.step(optim_d)
|
182 |
-
|
183 |
-
with autocast(enabled=hps.train.fp16_run):
|
184 |
-
# Generator
|
185 |
-
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
186 |
-
with autocast(enabled=False):
|
187 |
-
loss_dur = torch.sum(l_length.float())
|
188 |
-
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
189 |
-
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
190 |
-
|
191 |
-
loss_fm = feature_loss(fmap_r, fmap_g)
|
192 |
-
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
193 |
-
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
194 |
-
optim_g.zero_grad()
|
195 |
-
scaler.scale(loss_gen_all).backward()
|
196 |
-
scaler.unscale_(optim_g)
|
197 |
-
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
198 |
-
scaler.step(optim_g)
|
199 |
-
scaler.update()
|
200 |
-
|
201 |
-
if rank==0:
|
202 |
-
if global_step % hps.train.log_interval == 0:
|
203 |
-
lr = optim_g.param_groups[0]['lr']
|
204 |
-
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
205 |
-
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
206 |
-
epoch,
|
207 |
-
100. * batch_idx / len(train_loader)))
|
208 |
-
logger.info([x.item() for x in losses] + [global_step, lr])
|
209 |
-
|
210 |
-
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
|
211 |
-
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
|
212 |
-
|
213 |
-
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
214 |
-
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
215 |
-
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
216 |
-
image_dict = {
|
217 |
-
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
218 |
-
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
219 |
-
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
220 |
-
"all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
|
221 |
-
}
|
222 |
-
utils.summarize(
|
223 |
-
writer=writer,
|
224 |
-
global_step=global_step,
|
225 |
-
images=image_dict,
|
226 |
-
scalars=scalar_dict)
|
227 |
-
|
228 |
-
if global_step % hps.train.eval_interval == 0:
|
229 |
-
evaluate(hps, net_g, eval_loader, writer_eval)
|
230 |
-
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
|
231 |
-
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
|
232 |
-
global_step += 1
|
233 |
-
|
234 |
-
if rank == 0:
|
235 |
-
logger.info('====> Epoch: {}'.format(epoch))
|
236 |
-
|
237 |
-
|
238 |
-
def evaluate(hps, generator, eval_loader, writer_eval):
|
239 |
-
generator.eval()
|
240 |
-
with torch.no_grad():
|
241 |
-
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch) in enumerate(eval_loader):
|
242 |
-
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
243 |
-
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
244 |
-
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
245 |
-
pitch = pitch.cuda(0)
|
246 |
-
# remove else
|
247 |
-
x = x[:1]
|
248 |
-
x_lengths = x_lengths[:1]
|
249 |
-
spec = spec[:1]
|
250 |
-
spec_lengths = spec_lengths[:1]
|
251 |
-
y = y[:1]
|
252 |
-
y_lengths = y_lengths[:1]
|
253 |
-
break
|
254 |
-
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, pitch, max_len=1000)
|
255 |
-
y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
|
256 |
-
|
257 |
-
mel = spec_to_mel_torch(
|
258 |
-
spec,
|
259 |
-
hps.data.filter_length,
|
260 |
-
hps.data.n_mel_channels,
|
261 |
-
hps.data.sampling_rate,
|
262 |
-
hps.data.mel_fmin,
|
263 |
-
hps.data.mel_fmax)
|
264 |
-
y_hat_mel = mel_spectrogram_torch(
|
265 |
-
y_hat.squeeze(1).float(),
|
266 |
-
hps.data.filter_length,
|
267 |
-
hps.data.n_mel_channels,
|
268 |
-
hps.data.sampling_rate,
|
269 |
-
hps.data.hop_length,
|
270 |
-
hps.data.win_length,
|
271 |
-
hps.data.mel_fmin,
|
272 |
-
hps.data.mel_fmax
|
273 |
-
)
|
274 |
-
image_dict = {
|
275 |
-
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
276 |
-
}
|
277 |
-
audio_dict = {
|
278 |
-
"gen/audio": y_hat[0,:,:y_hat_lengths[0]]
|
279 |
-
}
|
280 |
-
if global_step == 0:
|
281 |
-
image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
282 |
-
audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
|
283 |
-
|
284 |
-
utils.summarize(
|
285 |
-
writer=writer_eval,
|
286 |
-
global_step=global_step,
|
287 |
-
images=image_dict,
|
288 |
-
audios=audio_dict,
|
289 |
-
audio_sampling_rate=hps.data.sampling_rate
|
290 |
-
)
|
291 |
-
generator.train()
|
292 |
-
|
293 |
-
|
294 |
-
if __name__ == "__main__":
|
295 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_ms.py
DELETED
@@ -1,296 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import argparse
|
4 |
-
import itertools
|
5 |
-
import math
|
6 |
-
import torch
|
7 |
-
from torch import nn, optim
|
8 |
-
from torch.nn import functional as F
|
9 |
-
from torch.utils.data import DataLoader
|
10 |
-
from torch.utils.tensorboard import SummaryWriter
|
11 |
-
import torch.multiprocessing as mp
|
12 |
-
import torch.distributed as dist
|
13 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
14 |
-
from torch.cuda.amp import autocast, GradScaler
|
15 |
-
|
16 |
-
import commons
|
17 |
-
import utils
|
18 |
-
from data_utils import (
|
19 |
-
TextAudioSpeakerLoader,
|
20 |
-
TextAudioSpeakerCollate,
|
21 |
-
DistributedBucketSampler
|
22 |
-
)
|
23 |
-
from models import (
|
24 |
-
SynthesizerTrn,
|
25 |
-
MultiPeriodDiscriminator,
|
26 |
-
)
|
27 |
-
from losses import (
|
28 |
-
generator_loss,
|
29 |
-
discriminator_loss,
|
30 |
-
feature_loss,
|
31 |
-
kl_loss
|
32 |
-
)
|
33 |
-
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
34 |
-
from text.symbols import symbols
|
35 |
-
|
36 |
-
|
37 |
-
torch.backends.cudnn.benchmark = True
|
38 |
-
global_step = 0
|
39 |
-
|
40 |
-
|
41 |
-
def main():
|
42 |
-
"""Assume Single Node Multi GPUs Training Only"""
|
43 |
-
assert torch.cuda.is_available(), "CPU training is not allowed."
|
44 |
-
|
45 |
-
n_gpus = torch.cuda.device_count()
|
46 |
-
os.environ['MASTER_ADDR'] = 'localhost'
|
47 |
-
os.environ['MASTER_PORT'] = '25565'
|
48 |
-
|
49 |
-
hps = utils.get_hparams()
|
50 |
-
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
51 |
-
|
52 |
-
|
53 |
-
def run(rank, n_gpus, hps):
|
54 |
-
global global_step
|
55 |
-
if rank == 0:
|
56 |
-
logger = utils.get_logger(hps.model_dir)
|
57 |
-
logger.info(hps)
|
58 |
-
utils.check_git_hash(hps.model_dir)
|
59 |
-
writer = SummaryWriter(log_dir=hps.model_dir)
|
60 |
-
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
61 |
-
|
62 |
-
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
|
63 |
-
torch.manual_seed(hps.train.seed)
|
64 |
-
torch.cuda.set_device(rank)
|
65 |
-
|
66 |
-
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
67 |
-
train_sampler = DistributedBucketSampler(
|
68 |
-
train_dataset,
|
69 |
-
hps.train.batch_size,
|
70 |
-
[32,300,400,500,600,700,800,900,1000],
|
71 |
-
num_replicas=n_gpus,
|
72 |
-
rank=rank,
|
73 |
-
shuffle=True)
|
74 |
-
collate_fn = TextAudioSpeakerCollate()
|
75 |
-
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
|
76 |
-
collate_fn=collate_fn, batch_sampler=train_sampler)
|
77 |
-
if rank == 0:
|
78 |
-
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
79 |
-
eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
|
80 |
-
batch_size=hps.train.batch_size, pin_memory=True,
|
81 |
-
drop_last=False, collate_fn=collate_fn)
|
82 |
-
|
83 |
-
net_g = SynthesizerTrn(
|
84 |
-
len(symbols),
|
85 |
-
hps.data.filter_length // 2 + 1,
|
86 |
-
hps.train.segment_size // hps.data.hop_length,
|
87 |
-
n_speakers=hps.data.n_speakers,
|
88 |
-
**hps.model).cuda(rank)
|
89 |
-
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
90 |
-
optim_g = torch.optim.AdamW(
|
91 |
-
net_g.parameters(),
|
92 |
-
hps.train.learning_rate,
|
93 |
-
betas=hps.train.betas,
|
94 |
-
eps=hps.train.eps)
|
95 |
-
optim_d = torch.optim.AdamW(
|
96 |
-
net_d.parameters(),
|
97 |
-
hps.train.learning_rate,
|
98 |
-
betas=hps.train.betas,
|
99 |
-
eps=hps.train.eps)
|
100 |
-
net_g = DDP(net_g, device_ids=[rank])
|
101 |
-
net_d = DDP(net_d, device_ids=[rank])
|
102 |
-
|
103 |
-
try:
|
104 |
-
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
|
105 |
-
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
|
106 |
-
global_step = (epoch_str - 1) * len(train_loader)
|
107 |
-
except:
|
108 |
-
epoch_str = 1
|
109 |
-
global_step = 0
|
110 |
-
|
111 |
-
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
|
112 |
-
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
|
113 |
-
|
114 |
-
scaler = GradScaler(enabled=hps.train.fp16_run)
|
115 |
-
|
116 |
-
for epoch in range(epoch_str, hps.train.epochs + 1):
|
117 |
-
if rank==0:
|
118 |
-
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
|
119 |
-
else:
|
120 |
-
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
|
121 |
-
scheduler_g.step()
|
122 |
-
scheduler_d.step()
|
123 |
-
|
124 |
-
|
125 |
-
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
126 |
-
net_g, net_d = nets
|
127 |
-
optim_g, optim_d = optims
|
128 |
-
scheduler_g, scheduler_d = schedulers
|
129 |
-
train_loader, eval_loader = loaders
|
130 |
-
if writers is not None:
|
131 |
-
writer, writer_eval = writers
|
132 |
-
|
133 |
-
train_loader.batch_sampler.set_epoch(epoch)
|
134 |
-
global global_step
|
135 |
-
|
136 |
-
net_g.train()
|
137 |
-
net_d.train()
|
138 |
-
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch, speakers) in enumerate(train_loader):
|
139 |
-
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
|
140 |
-
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
141 |
-
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
|
142 |
-
speakers = speakers.cuda(rank, non_blocking=True)
|
143 |
-
pitch = pitch.cuda(rank, non_blocking=True)
|
144 |
-
|
145 |
-
with autocast(enabled=hps.train.fp16_run):
|
146 |
-
y_hat, l_length, l_pitch, attn, ids_slice, x_mask, z_mask,\
|
147 |
-
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, pitch, speakers)
|
148 |
-
|
149 |
-
mel = spec_to_mel_torch(
|
150 |
-
spec,
|
151 |
-
hps.data.filter_length,
|
152 |
-
hps.data.n_mel_channels,
|
153 |
-
hps.data.sampling_rate,
|
154 |
-
hps.data.mel_fmin,
|
155 |
-
hps.data.mel_fmax)
|
156 |
-
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
157 |
-
y_hat_mel = mel_spectrogram_torch(
|
158 |
-
y_hat.squeeze(1),
|
159 |
-
hps.data.filter_length,
|
160 |
-
hps.data.n_mel_channels,
|
161 |
-
hps.data.sampling_rate,
|
162 |
-
hps.data.hop_length,
|
163 |
-
hps.data.win_length,
|
164 |
-
hps.data.mel_fmin,
|
165 |
-
hps.data.mel_fmax
|
166 |
-
)
|
167 |
-
|
168 |
-
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
169 |
-
|
170 |
-
# Discriminator
|
171 |
-
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
172 |
-
with autocast(enabled=False):
|
173 |
-
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
174 |
-
loss_disc_all = loss_disc
|
175 |
-
optim_d.zero_grad()
|
176 |
-
scaler.scale(loss_disc_all).backward()
|
177 |
-
scaler.unscale_(optim_d)
|
178 |
-
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
179 |
-
scaler.step(optim_d)
|
180 |
-
|
181 |
-
with autocast(enabled=hps.train.fp16_run):
|
182 |
-
# Generator
|
183 |
-
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
184 |
-
with autocast(enabled=False):
|
185 |
-
loss_dur = torch.sum(l_length.float())
|
186 |
-
loss_pitch = torch.sum(l_pitch.float())
|
187 |
-
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
188 |
-
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
189 |
-
|
190 |
-
loss_fm = feature_loss(fmap_r, fmap_g)
|
191 |
-
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
192 |
-
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl + loss_pitch
|
193 |
-
optim_g.zero_grad()
|
194 |
-
scaler.scale(loss_gen_all).backward()
|
195 |
-
scaler.unscale_(optim_g)
|
196 |
-
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
197 |
-
scaler.step(optim_g)
|
198 |
-
scaler.update()
|
199 |
-
|
200 |
-
if rank==0:
|
201 |
-
if global_step % hps.train.log_interval == 0:
|
202 |
-
lr = optim_g.param_groups[0]['lr']
|
203 |
-
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl, loss_pitch]
|
204 |
-
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
205 |
-
epoch,
|
206 |
-
100. * batch_idx / len(train_loader)))
|
207 |
-
logger.info([x.item() for x in losses] + [global_step, lr])
|
208 |
-
|
209 |
-
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
|
210 |
-
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl, "loss/g/pitch": loss_pitch})
|
211 |
-
|
212 |
-
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
213 |
-
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
214 |
-
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
215 |
-
image_dict = {
|
216 |
-
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
217 |
-
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
218 |
-
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
219 |
-
"all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
|
220 |
-
}
|
221 |
-
utils.summarize(
|
222 |
-
writer=writer,
|
223 |
-
global_step=global_step,
|
224 |
-
images=image_dict,
|
225 |
-
scalars=scalar_dict)
|
226 |
-
|
227 |
-
if global_step % hps.train.eval_interval == 0:
|
228 |
-
evaluate(hps, net_g, eval_loader, writer_eval)
|
229 |
-
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
|
230 |
-
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
|
231 |
-
global_step += 1
|
232 |
-
|
233 |
-
if rank == 0:
|
234 |
-
logger.info('====> Epoch: {}'.format(epoch))
|
235 |
-
|
236 |
-
|
237 |
-
def evaluate(hps, generator, eval_loader, writer_eval):
|
238 |
-
generator.eval()
|
239 |
-
with torch.no_grad():
|
240 |
-
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch, speakers) in enumerate(eval_loader):
|
241 |
-
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
242 |
-
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
243 |
-
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
244 |
-
speakers = speakers.cuda(0)
|
245 |
-
pitch = pitch.cuda(0)
|
246 |
-
# remove else
|
247 |
-
x = x[:1]
|
248 |
-
x_lengths = x_lengths[:1]
|
249 |
-
spec = spec[:1]
|
250 |
-
spec_lengths = spec_lengths[:1]
|
251 |
-
y = y[:1]
|
252 |
-
y_lengths = y_lengths[:1]
|
253 |
-
speakers = speakers[:1]
|
254 |
-
break
|
255 |
-
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, pitch, speakers, max_len=1000)
|
256 |
-
y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
|
257 |
-
|
258 |
-
mel = spec_to_mel_torch(
|
259 |
-
spec,
|
260 |
-
hps.data.filter_length,
|
261 |
-
hps.data.n_mel_channels,
|
262 |
-
hps.data.sampling_rate,
|
263 |
-
hps.data.mel_fmin,
|
264 |
-
hps.data.mel_fmax)
|
265 |
-
y_hat_mel = mel_spectrogram_torch(
|
266 |
-
y_hat.squeeze(1).float(),
|
267 |
-
hps.data.filter_length,
|
268 |
-
hps.data.n_mel_channels,
|
269 |
-
hps.data.sampling_rate,
|
270 |
-
hps.data.hop_length,
|
271 |
-
hps.data.win_length,
|
272 |
-
hps.data.mel_fmin,
|
273 |
-
hps.data.mel_fmax
|
274 |
-
)
|
275 |
-
image_dict = {
|
276 |
-
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
277 |
-
}
|
278 |
-
audio_dict = {
|
279 |
-
"gen/audio": y_hat[0,:,:y_hat_lengths[0]]
|
280 |
-
}
|
281 |
-
if global_step == 0:
|
282 |
-
image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
283 |
-
audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
|
284 |
-
|
285 |
-
utils.summarize(
|
286 |
-
writer=writer_eval,
|
287 |
-
global_step=global_step,
|
288 |
-
images=image_dict,
|
289 |
-
audios=audio_dict,
|
290 |
-
audio_sampling_rate=hps.data.sampling_rate
|
291 |
-
)
|
292 |
-
generator.train()
|
293 |
-
|
294 |
-
|
295 |
-
if __name__ == "__main__":
|
296 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transforms.py
CHANGED
@@ -1,25 +1,22 @@
|
|
1 |
-
import torch
|
2 |
-
from torch.nn import functional as F
|
3 |
-
|
4 |
import numpy as np
|
5 |
-
|
|
|
6 |
|
7 |
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
|
11 |
|
12 |
-
def piecewise_rational_quadratic_transform(inputs,
|
13 |
unnormalized_widths,
|
14 |
unnormalized_heights,
|
15 |
unnormalized_derivatives,
|
16 |
inverse=False,
|
17 |
-
tails=None,
|
18 |
tail_bound=1.,
|
19 |
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
22 |
-
|
23 |
if tails is None:
|
24 |
spline_fn = rational_quadratic_spline
|
25 |
spline_kwargs = {}
|
@@ -31,15 +28,15 @@ def piecewise_rational_quadratic_transform(inputs,
|
|
31 |
}
|
32 |
|
33 |
outputs, logabsdet = spline_fn(
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
)
|
44 |
return outputs, logabsdet
|
45 |
|
@@ -69,7 +66,7 @@ def unconstrained_rational_quadratic_spline(inputs,
|
|
69 |
logabsdet = torch.zeros_like(inputs)
|
70 |
|
71 |
if tails == 'linear':
|
72 |
-
unnormalized_derivatives =
|
73 |
constant = np.log(np.exp(1 - min_derivative) - 1)
|
74 |
unnormalized_derivatives[..., 0] = constant
|
75 |
unnormalized_derivatives[..., -1] = constant
|
@@ -93,6 +90,7 @@ def unconstrained_rational_quadratic_spline(inputs,
|
|
93 |
|
94 |
return outputs, logabsdet
|
95 |
|
|
|
96 |
def rational_quadratic_spline(inputs,
|
97 |
unnormalized_widths,
|
98 |
unnormalized_heights,
|
@@ -112,21 +110,21 @@ def rational_quadratic_spline(inputs,
|
|
112 |
if min_bin_height * num_bins > 1.0:
|
113 |
raise ValueError('Minimal bin height too large for the number of bins')
|
114 |
|
115 |
-
widths =
|
116 |
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
117 |
cumwidths = torch.cumsum(widths, dim=-1)
|
118 |
-
cumwidths =
|
119 |
cumwidths = (right - left) * cumwidths + left
|
120 |
cumwidths[..., 0] = left
|
121 |
cumwidths[..., -1] = right
|
122 |
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
123 |
|
124 |
-
derivatives = min_derivative +
|
125 |
|
126 |
-
heights =
|
127 |
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
128 |
cumheights = torch.cumsum(heights, dim=-1)
|
129 |
-
cumheights =
|
130 |
cumheights = (top - bottom) * cumheights + bottom
|
131 |
cumheights[..., 0] = bottom
|
132 |
cumheights[..., -1] = top
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as t_func
|
4 |
|
5 |
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
6 |
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
7 |
DEFAULT_MIN_DERIVATIVE = 1e-3
|
8 |
|
9 |
|
10 |
+
def piecewise_rational_quadratic_transform(inputs,
|
11 |
unnormalized_widths,
|
12 |
unnormalized_heights,
|
13 |
unnormalized_derivatives,
|
14 |
inverse=False,
|
15 |
+
tails=None,
|
16 |
tail_bound=1.,
|
17 |
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
18 |
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
19 |
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
|
|
20 |
if tails is None:
|
21 |
spline_fn = rational_quadratic_spline
|
22 |
spline_kwargs = {}
|
|
|
28 |
}
|
29 |
|
30 |
outputs, logabsdet = spline_fn(
|
31 |
+
inputs=inputs,
|
32 |
+
unnormalized_widths=unnormalized_widths,
|
33 |
+
unnormalized_heights=unnormalized_heights,
|
34 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
35 |
+
inverse=inverse,
|
36 |
+
min_bin_width=min_bin_width,
|
37 |
+
min_bin_height=min_bin_height,
|
38 |
+
min_derivative=min_derivative,
|
39 |
+
**spline_kwargs
|
40 |
)
|
41 |
return outputs, logabsdet
|
42 |
|
|
|
66 |
logabsdet = torch.zeros_like(inputs)
|
67 |
|
68 |
if tails == 'linear':
|
69 |
+
unnormalized_derivatives = t_func.pad(unnormalized_derivatives, pad=(1, 1))
|
70 |
constant = np.log(np.exp(1 - min_derivative) - 1)
|
71 |
unnormalized_derivatives[..., 0] = constant
|
72 |
unnormalized_derivatives[..., -1] = constant
|
|
|
90 |
|
91 |
return outputs, logabsdet
|
92 |
|
93 |
+
|
94 |
def rational_quadratic_spline(inputs,
|
95 |
unnormalized_widths,
|
96 |
unnormalized_heights,
|
|
|
110 |
if min_bin_height * num_bins > 1.0:
|
111 |
raise ValueError('Minimal bin height too large for the number of bins')
|
112 |
|
113 |
+
widths = t_func.softmax(unnormalized_widths, dim=-1)
|
114 |
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
115 |
cumwidths = torch.cumsum(widths, dim=-1)
|
116 |
+
cumwidths = t_func.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
117 |
cumwidths = (right - left) * cumwidths + left
|
118 |
cumwidths[..., 0] = left
|
119 |
cumwidths[..., -1] = right
|
120 |
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
121 |
|
122 |
+
derivatives = min_derivative + t_func.softplus(unnormalized_derivatives)
|
123 |
|
124 |
+
heights = t_func.softmax(unnormalized_heights, dim=-1)
|
125 |
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
126 |
cumheights = torch.cumsum(heights, dim=-1)
|
127 |
+
cumheights = t_func.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
128 |
cumheights = (top - bottom) * cumheights + bottom
|
129 |
cumheights[..., 0] = bottom
|
130 |
cumheights[..., -1] = top
|
utils.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
-
import os
|
2 |
-
import glob
|
3 |
-
import sys
|
4 |
import argparse
|
5 |
-
import
|
6 |
import json
|
|
|
|
|
7 |
import subprocess
|
|
|
|
|
8 |
import numpy as np
|
9 |
-
from scipy.io.wavfile import read
|
10 |
import torch
|
|
|
11 |
|
12 |
MATPLOTLIB_FLAG = False
|
13 |
|
@@ -16,246 +17,247 @@ logger = logging
|
|
16 |
|
17 |
|
18 |
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
model
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
47 |
|
48 |
|
49 |
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
|
62 |
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
|
73 |
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
|
81 |
def plot_spectrogram_to_numpy(spectrogram):
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
|
106 |
|
107 |
def plot_alignment_to_numpy(alignment, info=None):
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
|
135 |
|
136 |
def load_wav_to_torch(full_path):
|
137 |
-
|
138 |
-
|
139 |
|
140 |
|
141 |
def load_filepaths_and_text(filename, split="|"):
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
|
146 |
|
147 |
def get_hparams(init=True):
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
|
176 |
|
177 |
def get_hparams_from_dir(model_dir):
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
|
187 |
|
188 |
def get_hparams_from_file(config_path):
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
|
193 |
-
|
194 |
-
|
195 |
|
196 |
|
197 |
def check_git_hash(model_dir):
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
|
205 |
-
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
|
216 |
|
217 |
def get_logger(model_dir, filename="train.log"):
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
class HParams
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
1 |
import argparse
|
2 |
+
import glob
|
3 |
import json
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
import subprocess
|
7 |
+
import sys
|
8 |
+
|
9 |
import numpy as np
|
|
|
10 |
import torch
|
11 |
+
from scipy.io.wavfile import read
|
12 |
|
13 |
MATPLOTLIB_FLAG = False
|
14 |
|
|
|
17 |
|
18 |
|
19 |
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
20 |
+
assert os.path.isfile(checkpoint_path)
|
21 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
22 |
+
iteration = checkpoint_dict['iteration']
|
23 |
+
learning_rate = checkpoint_dict['learning_rate']
|
24 |
+
if optimizer is not None:
|
25 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
26 |
+
# print(1111)
|
27 |
+
saved_state_dict = checkpoint_dict['model']
|
28 |
+
# print(1111)
|
29 |
+
|
30 |
+
if hasattr(model, 'module'):
|
31 |
+
state_dict = model.module.state_dict()
|
32 |
+
else:
|
33 |
+
state_dict = model.state_dict()
|
34 |
+
new_state_dict = {}
|
35 |
+
for k, v in state_dict.items():
|
36 |
+
try:
|
37 |
+
new_state_dict[k] = saved_state_dict[k]
|
38 |
+
except Exception as e:
|
39 |
+
logger.info(e)
|
40 |
+
logger.info("%s is not in the checkpoint" % k)
|
41 |
+
new_state_dict[k] = v
|
42 |
+
if hasattr(model, 'module'):
|
43 |
+
model.module.load_state_dict(new_state_dict)
|
44 |
+
else:
|
45 |
+
model.load_state_dict(new_state_dict)
|
46 |
+
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
47 |
+
checkpoint_path, iteration))
|
48 |
+
return model, optimizer, learning_rate, iteration
|
49 |
|
50 |
|
51 |
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
52 |
+
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
53 |
+
iteration, checkpoint_path))
|
54 |
+
if hasattr(model, 'module'):
|
55 |
+
state_dict = model.module.state_dict()
|
56 |
+
else:
|
57 |
+
state_dict = model.state_dict()
|
58 |
+
torch.save({'model': state_dict,
|
59 |
+
'iteration': iteration,
|
60 |
+
'optimizer': optimizer.state_dict(),
|
61 |
+
'learning_rate': learning_rate}, checkpoint_path)
|
62 |
|
63 |
|
64 |
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
65 |
+
for k, v in scalars.items():
|
66 |
+
writer.add_scalar(k, v, global_step)
|
67 |
+
for k, v in histograms.items():
|
68 |
+
writer.add_histogram(k, v, global_step)
|
69 |
+
for k, v in images.items():
|
70 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
71 |
+
for k, v in audios.items():
|
72 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
73 |
|
74 |
|
75 |
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
76 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
77 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
78 |
+
x = f_list[-1]
|
79 |
+
print(x)
|
80 |
+
return x
|
81 |
|
82 |
|
83 |
def plot_spectrogram_to_numpy(spectrogram):
|
84 |
+
global MATPLOTLIB_FLAG
|
85 |
+
if not MATPLOTLIB_FLAG:
|
86 |
+
import matplotlib
|
87 |
+
matplotlib.use("Agg")
|
88 |
+
MATPLOTLIB_FLAG = True
|
89 |
+
mpl_logger = logging.getLogger('matplotlib')
|
90 |
+
mpl_logger.setLevel(logging.WARNING)
|
91 |
+
import matplotlib.pylab as plt
|
92 |
+
import numpy
|
93 |
+
|
94 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
95 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
96 |
+
interpolation='none')
|
97 |
+
plt.colorbar(im, ax=ax)
|
98 |
+
plt.xlabel("Frames")
|
99 |
+
plt.ylabel("Channels")
|
100 |
+
plt.tight_layout()
|
101 |
+
|
102 |
+
fig.canvas.draw()
|
103 |
+
data = numpy.fromstring(fig.canvas.tostring_rgb(), dtype=numpy.uint8, sep='')
|
104 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
105 |
+
plt.close()
|
106 |
+
return data
|
107 |
|
108 |
|
109 |
def plot_alignment_to_numpy(alignment, info=None):
|
110 |
+
global MATPLOTLIB_FLAG
|
111 |
+
if not MATPLOTLIB_FLAG:
|
112 |
+
import matplotlib
|
113 |
+
matplotlib.use("Agg")
|
114 |
+
MATPLOTLIB_FLAG = True
|
115 |
+
mpl_logger = logging.getLogger('matplotlib')
|
116 |
+
mpl_logger.setLevel(logging.WARNING)
|
117 |
+
import matplotlib.pylab as plt
|
118 |
+
import numpy
|
119 |
+
|
120 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
121 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
122 |
+
interpolation='none')
|
123 |
+
fig.colorbar(im, ax=ax)
|
124 |
+
xlabel = 'Decoder timestep'
|
125 |
+
if info is not None:
|
126 |
+
xlabel += '\n\n' + info
|
127 |
+
plt.xlabel(xlabel)
|
128 |
+
plt.ylabel('Encoder timestep')
|
129 |
+
plt.tight_layout()
|
130 |
+
|
131 |
+
fig.canvas.draw()
|
132 |
+
data = numpy.fromstring(fig.canvas.tostring_rgb(), dtype=numpy.uint8, sep='')
|
133 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
134 |
+
plt.close()
|
135 |
+
return data
|
136 |
|
137 |
|
138 |
def load_wav_to_torch(full_path):
|
139 |
+
sampling_rate, data = read(full_path)
|
140 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
141 |
|
142 |
|
143 |
def load_filepaths_and_text(filename, split="|"):
|
144 |
+
with open(filename, encoding='utf-8') as f:
|
145 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
146 |
+
return filepaths_and_text
|
147 |
|
148 |
|
149 |
def get_hparams(init=True):
|
150 |
+
parser = argparse.ArgumentParser()
|
151 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
|
152 |
+
help='JSON file for configuration')
|
153 |
+
parser.add_argument('-m', '--model', type=str, required=True,
|
154 |
+
help='Model name')
|
155 |
+
|
156 |
+
args = parser.parse_args()
|
157 |
+
model_dir = os.path.join("./logs", args.model)
|
158 |
+
|
159 |
+
if not os.path.exists(model_dir):
|
160 |
+
os.makedirs(model_dir)
|
161 |
+
|
162 |
+
config_path = args.config
|
163 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
164 |
+
if init:
|
165 |
+
with open(config_path, "r") as f:
|
166 |
+
data = f.read()
|
167 |
+
with open(config_save_path, "w") as f:
|
168 |
+
f.write(data)
|
169 |
+
else:
|
170 |
+
with open(config_save_path, "r") as f:
|
171 |
+
data = f.read()
|
172 |
+
config = json.loads(data)
|
173 |
+
|
174 |
+
hparams = HParams(**config)
|
175 |
+
hparams.model_dir = model_dir
|
176 |
+
return hparams
|
177 |
|
178 |
|
179 |
def get_hparams_from_dir(model_dir):
|
180 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
181 |
+
with open(config_save_path, "r") as f:
|
182 |
+
data = f.read()
|
183 |
+
config = json.loads(data)
|
184 |
|
185 |
+
hparams = HParams(**config)
|
186 |
+
hparams.model_dir = model_dir
|
187 |
+
return hparams
|
188 |
|
189 |
|
190 |
def get_hparams_from_file(config_path):
|
191 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
192 |
+
data = f.read()
|
193 |
+
config = json.loads(data)
|
194 |
|
195 |
+
hparams = HParams(**config)
|
196 |
+
return hparams
|
197 |
|
198 |
|
199 |
def check_git_hash(model_dir):
|
200 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
201 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
202 |
+
logger.warning("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
203 |
+
source_dir
|
204 |
+
))
|
205 |
+
return
|
206 |
|
207 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
208 |
|
209 |
+
path = os.path.join(model_dir, "githash")
|
210 |
+
if os.path.exists(path):
|
211 |
+
saved_hash = open(path).read()
|
212 |
+
if saved_hash != cur_hash:
|
213 |
+
logger.warning("git hash values are different. {}(saved) != {}(current)".format(
|
214 |
+
saved_hash[:8], cur_hash[:8]))
|
215 |
+
else:
|
216 |
+
open(path, "w").write(cur_hash)
|
217 |
|
218 |
|
219 |
def get_logger(model_dir, filename="train.log"):
|
220 |
+
global logger
|
221 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
222 |
+
logger.setLevel(logging.DEBUG)
|
223 |
+
|
224 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
225 |
+
if not os.path.exists(model_dir):
|
226 |
+
os.makedirs(model_dir)
|
227 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
228 |
+
h.setLevel(logging.DEBUG)
|
229 |
+
h.setFormatter(formatter)
|
230 |
+
logger.addHandler(h)
|
231 |
+
return logger
|
232 |
+
|
233 |
+
|
234 |
+
class HParams:
|
235 |
+
def __init__(self, **kwargs):
|
236 |
+
for k, v in kwargs.items():
|
237 |
+
if type(v) == dict:
|
238 |
+
v = HParams(**v)
|
239 |
+
self[k] = v
|
240 |
+
|
241 |
+
def keys(self):
|
242 |
+
return self.__dict__.keys()
|
243 |
+
|
244 |
+
def items(self):
|
245 |
+
return self.__dict__.items()
|
246 |
+
|
247 |
+
def values(self):
|
248 |
+
return self.__dict__.values()
|
249 |
+
|
250 |
+
def __len__(self):
|
251 |
+
return len(self.__dict__)
|
252 |
+
|
253 |
+
def __getitem__(self, key):
|
254 |
+
return getattr(self, key)
|
255 |
+
|
256 |
+
def __setitem__(self, key, value):
|
257 |
+
return setattr(self, key, value)
|
258 |
+
|
259 |
+
def __contains__(self, key):
|
260 |
+
return key in self.__dict__
|
261 |
+
|
262 |
+
def __repr__(self):
|
263 |
+
return self.__dict__.__repr__()
|