innnky commited on
Commit
3fd832e
1 Parent(s): bd49cdd

更新模型,更换为使用@xiaolang 制作的GUI界面

Browse files
nyarumodel.pth → 83_epochs.pth RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:07442f7d1cc18cace0d18051c6a4f5757bfbd2f4701bd3be2691d398656d24c4
3
- size 256011087
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b2d02f32e9df815c473e775187a5cbcc3fe60412681ec462d13570d7191b5e3
3
+ size 221251405
LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2021 Jaehyeon Kim
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,120 +1,103 @@
1
  import gradio as gr
2
- import os
3
- os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
4
-
5
- import logging
6
-
7
- numba_logger = logging.getLogger('numba')
8
- numba_logger.setLevel(logging.WARNING)
9
- import librosa
10
  import torch
11
- import commons
12
- import utils
13
- from models import SynthesizerTrn
14
- from text.symbols import symbols
15
- from text import text_to_sequence
16
- import numpy as np
17
- import soundfile as sf
18
- from preprocess_wave import FeatureInput
19
-
20
- def resize2d(x, target_len):
21
- source = np.array(x)
22
- source[source<0.001] = np.nan
23
- target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
24
- res = np.nan_to_num(target)
25
- return res
26
-
27
- def transcribe(path, length, transform):
28
- featur_pit = featureInput.compute_f0(path)
29
- featur_pit = featur_pit * 2**(transform/12)
30
- featur_pit = resize2d(featur_pit, length)
31
- coarse_pit = featureInput.coarse_f0(featur_pit)
32
- return coarse_pit
33
-
34
- def get_text(text, hps):
35
- text_norm = text_to_sequence(text, hps.data.text_cleaners)
36
- if hps.data.add_blank:
37
- text_norm = commons.intersperse(text_norm, 0)
38
- text_norm = torch.LongTensor(text_norm)
39
- print(text_norm.shape)
40
- return text_norm
41
-
42
- convert_cnt = [0]
43
-
44
- hps_ms = utils.get_hparams_from_file("configs/nyarumul.json")
45
- net_g_ms = SynthesizerTrn(
46
- len(symbols),
47
- hps_ms.data.filter_length // 2 + 1,
48
- hps_ms.train.segment_size // hps_ms.data.hop_length,
49
- n_speakers=hps_ms.data.n_speakers,
50
- **hps_ms.model)
51
-
52
- featureInput = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length)
53
 
 
54
 
55
- hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
56
-
57
- _ = utils.load_checkpoint("nyarumodel.pth", net_g_ms, None)
58
-
59
- def vc_fn(sid,random1, input_audio,vc_transform):
60
- if input_audio is None:
61
- return "You need to upload an audio", None
62
- sampling_rate, audio = input_audio
63
- # print(audio.shape,sampling_rate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  duration = audio.shape[0] / sampling_rate
65
- if duration > 45:
66
- return "请上传小于45s的音频,需要转换长音频请使用colab", None
67
- audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
68
- if len(audio.shape) > 1:
69
- audio = librosa.to_mono(audio.transpose(1, 0))
70
- if sampling_rate != 16000:
71
- audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
72
-
73
- source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)
74
- print(source.shape)
75
- with torch.inference_mode():
76
- units = hubert.units(source)
77
- soft = units.squeeze(0).numpy()
78
- audio22050 = librosa.resample(audio, orig_sr=16000, target_sr=22050)
79
- sf.write("temp.wav", audio22050, 22050)
80
- pitch = transcribe("temp.wav", soft.shape[0], vc_transform)
81
- pitch = torch.LongTensor(pitch).unsqueeze(0)
82
- sid = torch.LongTensor([0]) if sid == "猫雷" else torch.LongTensor([1])
83
- stn_tst = torch.FloatTensor(soft)
84
- with torch.no_grad():
85
- x_tst = stn_tst.unsqueeze(0)
86
- x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
87
- audio = net_g_ms.infer(x_tst, x_tst_lengths, pitch=pitch,sid=sid, noise_scale=float(random1),
88
- noise_scale_w=0.1, length_scale=1)[0][0, 0].data.float().numpy()
89
- convert_cnt[0] += 1
90
- print(convert_cnt[0])
91
- return "Success", (hps_ms.data.sampling_rate, audio)
92
 
93
 
94
  app = gr.Blocks()
95
  with app:
96
  with gr.Tabs():
97
  with gr.TabItem("Basic"):
98
- gr.Markdown(value="""本模型相比与前一个模型,音质和音准方面有一定的提升,但是低音音域目前存在较大问题。
99
-
100
- 目前猫雷模型能够唱的最低音为#G3(207hz) 低于该音会当场爆炸(之前的模型只是会跑调),
101
-
102
- 因此请不要让这个模型唱男声的音高,请使用变调功能将音域移动至207hz以上。
103
 
104
- 该模型的 [github仓库链接](https://github.com/innnky/so-vits-svc)
105
 
106
- 如果想自己制作并训练模型可以访问这个 [github仓库](https://github.com/IceKyrin/sovits_guide)
107
 
108
- ps: 更新了一下模型,现在和视频中不是一个同一个模型,b站视频中的模型在git历史中(因为之前数据集中似乎混入了一些杂项导致音色有些偏离猫雷音色)
109
 
110
  """)
111
- sid = gr.Dropdown(label="音色",choices=['猫雷'], value="猫雷")
112
- vc_input3 = gr.Audio(label="上传音频(长度小于45秒)")
113
- vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)",value=0)
114
- random1 = gr.Number(label="随机化程度,似乎会影响音质,建议保持默认",value=0.4)
 
115
  vc_submit = gr.Button("转换", variant="primary")
116
- vc_output1 = gr.Textbox(label="Output Message")
117
- vc_output2 = gr.Audio(label="Output Audio")
118
- vc_submit.click(vc_fn, [sid,random1, vc_input3, vc_transform], [vc_output1, vc_output2])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
- app.launch()
 
1
  import gradio as gr
2
+ import soundfile
 
 
 
 
 
 
 
3
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ import infer_tool
6
 
7
+ convert_cnt = [0]
8
+ dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
+ model_name = "83_epochs.pth"
10
+ config_name = "nyarumul.json"
11
+ net_g_ms, hubert_soft, feature_input, hps_ms = infer_tool.load_model(f"{model_name}", f"configs/{config_name}")
12
+
13
+ # 获取config参数
14
+ target_sample = hps_ms.data.sampling_rate
15
+ spk_dict = {
16
+ "猫雷2.0": 0,
17
+ "云灏": 2,
18
+ "即霜": 3,
19
+ "奕兰秋": 4
20
+ }
21
+
22
+
23
+ def vc_fn(sid, audio_record, audio_upload, tran):
24
+ print(sid)
25
+ if audio_upload is not None:
26
+ audio_path = audio_upload
27
+ elif audio_record is not None:
28
+ audio_path = audio_record
29
+ else:
30
+ return "你需要上传wav文件或使用网页内置的录音!", None
31
+
32
+ audio, sampling_rate = infer_tool.format_wav(audio_path, target_sample)
33
  duration = audio.shape[0] / sampling_rate
34
+ if duration > 60:
35
+ return "请上传小于60s的音频,需要转换长音频请使用colab", None
36
+
37
+ o_audio, out_sr = infer_tool.infer(audio_path, spk_dict[sid], tran, net_g_ms, hubert_soft, feature_input)
38
+ out_path = f"./out_temp.wav"
39
+ soundfile.write(out_path, o_audio, target_sample)
40
+ infer_tool.f0_plt(audio_path, out_path, tran, hubert_soft, feature_input)
41
+ mistake, var = infer_tool.calc_error(audio_path, out_path, tran, feature_input)
42
+ return f"半音偏差:{mistake}\n半音方差:{var}", (
43
+ target_sample, o_audio), gr.Image.update("temp.jpg")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
 
46
  app = gr.Blocks()
47
  with app:
48
  with gr.Tabs():
49
  with gr.TabItem("Basic"):
50
+ gr.Markdown(value="""
51
+ 本模型为sovits_f0(含AI猫雷2.0音色),支持**60s以内**的**无伴奏**wav、mp3(单声道)格式,或使用**网页内置**的录音(二选一)
 
 
 
52
 
53
+ 转换效果取决于源音频语气、节奏是否与目标音色相近,以及音域是否超出目标音色音域范围
54
 
55
+ 猫雷音色低音音域效果不佳,如转换男声歌声,建议变调升 **6-10key**
56
 
57
+ 该模型的 [github仓库链接](https://github.com/innnky/so-vits-svc),如果想自己制作并训练模型可以访问这个 [github仓库](https://github.com/IceKyrin/sovits_guide)
58
 
59
  """)
60
+ speaker_id = gr.Dropdown(label="音色", choices=['猫雷2.0', '云灏', '即霜', "奕兰秋"], value="猫雷2.0")
61
+ record_input = gr.Audio(source="microphone", label="录制你的声音", type="filepath", elem_id="audio_inputs")
62
+ upload_input = gr.Audio(source="upload", label="上传音频(长度小于45秒)", type="filepath",
63
+ elem_id="audio_inputs")
64
+ vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
65
  vc_submit = gr.Button("转换", variant="primary")
66
+ out_audio = gr.Audio(label="Output Audio")
67
+ gr.Markdown(value="""
68
+ 输出信息为音高平均偏差半音数量,体现转换音频的跑调情况(一般平均小于0.5个半音)
69
+
70
+ f0曲线可以直观的显示跑调情况,蓝色为输入音高,橙色为合成音频的音高
71
+
72
+ 若**只看见橙色**,说明蓝色曲线被覆盖,转换效果较好
73
+
74
+ """)
75
+ out_message = gr.Textbox(label="跑调误差信息")
76
+ gr.Markdown(value="""f0曲线可以直观的显示跑调情况,蓝色为输入音高,橙色为合成音频的音高
77
+
78
+ 若**只看见橙色**,说明蓝色曲线被覆盖,转换效果较好
79
+
80
+ """)
81
+ f0_image = gr.Image(label="f0曲线")
82
+ vc_submit.click(vc_fn, [speaker_id, record_input, upload_input, vc_transform],
83
+ [out_message, out_audio, f0_image])
84
+ with gr.TabItem("使用说明"):
85
+ gr.Markdown(value="""
86
+ 0、合集:https://github.com/IceKyrin/sovits_guide/blob/main/README.md
87
+
88
+ 1、仅支持sovit_f0(sovits2.0)模型
89
+
90
+ 2、自行下载hubert-soft-0d54a1f4.pt改名为hubert.pt放置于pth文件夹下(已经下好了)
91
+ https://github.com/bshall/hubert/releases/tag/v0.1
92
+
93
+ 3、pth文件夹下放置sovits2.0的模型
94
+
95
+ 4、与模型配套的xxx.json,需有speaker项——人物列表
96
+
97
+ 5、放无伴奏的音频、或网页内置录音,不要放奇奇怪怪的格式
98
+
99
+ 6、仅供交流使用,不对用户行为负责
100
+
101
+ """)
102
 
103
+ app.launch()
attentions.py CHANGED
@@ -1,303 +1,311 @@
1
- import copy
2
  import math
3
- import numpy as np
4
  import torch
5
  from torch import nn
6
- from torch.nn import functional as F
7
 
8
  import commons
9
- import modules
10
  from modules import LayerNorm
11
-
12
 
13
  class Encoder(nn.Module):
14
- def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15
- super().__init__()
16
- self.hidden_channels = hidden_channels
17
- self.filter_channels = filter_channels
18
- self.n_heads = n_heads
19
- self.n_layers = n_layers
20
- self.kernel_size = kernel_size
21
- self.p_dropout = p_dropout
22
- self.window_size = window_size
23
-
24
- self.drop = nn.Dropout(p_dropout)
25
- self.attn_layers = nn.ModuleList()
26
- self.norm_layers_1 = nn.ModuleList()
27
- self.ffn_layers = nn.ModuleList()
28
- self.norm_layers_2 = nn.ModuleList()
29
- for i in range(self.n_layers):
30
- self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31
- self.norm_layers_1.append(LayerNorm(hidden_channels))
32
- self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33
- self.norm_layers_2.append(LayerNorm(hidden_channels))
34
-
35
- def forward(self, x, x_mask):
36
- attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37
- x = x * x_mask
38
- for i in range(self.n_layers):
39
- y = self.attn_layers[i](x, x, attn_mask)
40
- y = self.drop(y)
41
- x = self.norm_layers_1[i](x + y)
42
-
43
- y = self.ffn_layers[i](x, x_mask)
44
- y = self.drop(y)
45
- x = self.norm_layers_2[i](x + y)
46
- x = x * x_mask
47
- return x
 
 
 
48
 
49
 
50
  class Decoder(nn.Module):
51
- def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52
- super().__init__()
53
- self.hidden_channels = hidden_channels
54
- self.filter_channels = filter_channels
55
- self.n_heads = n_heads
56
- self.n_layers = n_layers
57
- self.kernel_size = kernel_size
58
- self.p_dropout = p_dropout
59
- self.proximal_bias = proximal_bias
60
- self.proximal_init = proximal_init
61
-
62
- self.drop = nn.Dropout(p_dropout)
63
- self.self_attn_layers = nn.ModuleList()
64
- self.norm_layers_0 = nn.ModuleList()
65
- self.encdec_attn_layers = nn.ModuleList()
66
- self.norm_layers_1 = nn.ModuleList()
67
- self.ffn_layers = nn.ModuleList()
68
- self.norm_layers_2 = nn.ModuleList()
69
- for i in range(self.n_layers):
70
- self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71
- self.norm_layers_0.append(LayerNorm(hidden_channels))
72
- self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73
- self.norm_layers_1.append(LayerNorm(hidden_channels))
74
- self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75
- self.norm_layers_2.append(LayerNorm(hidden_channels))
76
-
77
- def forward(self, x, x_mask, h, h_mask):
78
- """
79
- x: decoder input
80
- h: encoder output
81
- """
82
- self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83
- encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84
- x = x * x_mask
85
- for i in range(self.n_layers):
86
- y = self.self_attn_layers[i](x, x, self_attn_mask)
87
- y = self.drop(y)
88
- x = self.norm_layers_0[i](x + y)
89
-
90
- y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91
- y = self.drop(y)
92
- x = self.norm_layers_1[i](x + y)
93
-
94
- y = self.ffn_layers[i](x, x_mask)
95
- y = self.drop(y)
96
- x = self.norm_layers_2[i](x + y)
97
- x = x * x_mask
98
- return x
 
 
 
 
 
99
 
100
 
101
  class MultiHeadAttention(nn.Module):
102
- def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103
- super().__init__()
104
- assert channels % n_heads == 0
105
-
106
- self.channels = channels
107
- self.out_channels = out_channels
108
- self.n_heads = n_heads
109
- self.p_dropout = p_dropout
110
- self.window_size = window_size
111
- self.heads_share = heads_share
112
- self.block_length = block_length
113
- self.proximal_bias = proximal_bias
114
- self.proximal_init = proximal_init
115
- self.attn = None
116
-
117
- self.k_channels = channels // n_heads
118
- self.conv_q = nn.Conv1d(channels, channels, 1)
119
- self.conv_k = nn.Conv1d(channels, channels, 1)
120
- self.conv_v = nn.Conv1d(channels, channels, 1)
121
- self.conv_o = nn.Conv1d(channels, out_channels, 1)
122
- self.drop = nn.Dropout(p_dropout)
123
-
124
- if window_size is not None:
125
- n_heads_rel = 1 if heads_share else n_heads
126
- rel_stddev = self.k_channels**-0.5
127
- self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128
- self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129
-
130
- nn.init.xavier_uniform_(self.conv_q.weight)
131
- nn.init.xavier_uniform_(self.conv_k.weight)
132
- nn.init.xavier_uniform_(self.conv_v.weight)
133
- if proximal_init:
134
- with torch.no_grad():
135
- self.conv_k.weight.copy_(self.conv_q.weight)
136
- self.conv_k.bias.copy_(self.conv_q.bias)
137
-
138
- def forward(self, x, c, attn_mask=None):
139
- q = self.conv_q(x)
140
- k = self.conv_k(c)
141
- v = self.conv_v(c)
142
-
143
- x, self.attn = self.attention(q, k, v, mask=attn_mask)
144
-
145
- x = self.conv_o(x)
146
- return x
147
-
148
- def attention(self, query, key, value, mask=None):
149
- # reshape [b, d, t] -> [b, n_h, t, d_k]
150
- b, d, t_s, t_t = (*key.size(), query.size(2))
151
- query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152
- key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153
- value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154
-
155
- scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156
- if self.window_size is not None:
157
- assert t_s == t_t, "Relative attention is only available for self-attention."
158
- key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159
- rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160
- scores_local = self._relative_position_to_absolute_position(rel_logits)
161
- scores = scores + scores_local
162
- if self.proximal_bias:
163
- assert t_s == t_t, "Proximal bias is only available for self-attention."
164
- scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165
- if mask is not None:
166
- scores = scores.masked_fill(mask == 0, -1e4)
167
- if self.block_length is not None:
168
- assert t_s == t_t, "Local attention is only available for self-attention."
169
- block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170
- scores = scores.masked_fill(block_mask == 0, -1e4)
171
- p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172
- p_attn = self.drop(p_attn)
173
- output = torch.matmul(p_attn, value)
174
- if self.window_size is not None:
175
- relative_weights = self._absolute_position_to_relative_position(p_attn)
176
- value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177
- output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178
- output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179
- return output, p_attn
180
-
181
- def _matmul_with_relative_values(self, x, y):
182
- """
183
- x: [b, h, l, m]
184
- y: [h or 1, m, d]
185
- ret: [b, h, l, d]
186
- """
187
- ret = torch.matmul(x, y.unsqueeze(0))
188
- return ret
189
-
190
- def _matmul_with_relative_keys(self, x, y):
191
- """
192
- x: [b, h, l, d]
193
- y: [h or 1, m, d]
194
- ret: [b, h, l, m]
195
- """
196
- ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197
- return ret
198
-
199
- def _get_relative_embeddings(self, relative_embeddings, length):
200
- max_relative_position = 2 * self.window_size + 1
201
- # Pad first before slice to avoid using cond ops.
202
- pad_length = max(length - (self.window_size + 1), 0)
203
- slice_start_position = max((self.window_size + 1) - length, 0)
204
- slice_end_position = slice_start_position + 2 * length - 1
205
- if pad_length > 0:
206
- padded_relative_embeddings = F.pad(
207
- relative_embeddings,
208
- commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209
- else:
210
- padded_relative_embeddings = relative_embeddings
211
- used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212
- return used_relative_embeddings
213
-
214
- def _relative_position_to_absolute_position(self, x):
215
- """
216
- x: [b, h, l, 2*l-1]
217
- ret: [b, h, l, l]
218
- """
219
- batch, heads, length, _ = x.size()
220
- # Concat columns of pad to shift from relative to absolute indexing.
221
- x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222
-
223
- # Concat extra elements so to add up to shape (len+1, 2*len-1).
224
- x_flat = x.view([batch, heads, length * 2 * length])
225
- x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226
-
227
- # Reshape and slice out the padded elements.
228
- x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229
- return x_final
230
-
231
- def _absolute_position_to_relative_position(self, x):
232
- """
233
- x: [b, h, l, l]
234
- ret: [b, h, l, 2*l-1]
235
- """
236
- batch, heads, length, _ = x.size()
237
- # padd along column
238
- x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239
- x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240
- # add 0's in the beginning that will skew the elements after reshape
241
- x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242
- x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243
- return x_final
244
-
245
- def _attention_bias_proximal(self, length):
246
- """Bias for self-attention to encourage attention to close positions.
247
- Args:
248
- length: an integer scalar.
249
- Returns:
250
- a Tensor with shape [1, 1, length, length]
251
- """
252
- r = torch.arange(length, dtype=torch.float32)
253
- diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254
- return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
 
255
 
256
 
257
  class FFN(nn.Module):
258
- def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259
- super().__init__()
260
- self.in_channels = in_channels
261
- self.out_channels = out_channels
262
- self.filter_channels = filter_channels
263
- self.kernel_size = kernel_size
264
- self.p_dropout = p_dropout
265
- self.activation = activation
266
- self.causal = causal
267
-
268
- if causal:
269
- self.padding = self._causal_padding
270
- else:
271
- self.padding = self._same_padding
272
-
273
- self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274
- self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275
- self.drop = nn.Dropout(p_dropout)
276
-
277
- def forward(self, x, x_mask):
278
- x = self.conv_1(self.padding(x * x_mask))
279
- if self.activation == "gelu":
280
- x = x * torch.sigmoid(1.702 * x)
281
- else:
282
- x = torch.relu(x)
283
- x = self.drop(x)
284
- x = self.conv_2(self.padding(x * x_mask))
285
- return x * x_mask
286
-
287
- def _causal_padding(self, x):
288
- if self.kernel_size == 1:
289
- return x
290
- pad_l = self.kernel_size - 1
291
- pad_r = 0
292
- padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293
- x = F.pad(x, commons.convert_pad_shape(padding))
294
- return x
295
-
296
- def _same_padding(self, x):
297
- if self.kernel_size == 1:
298
- return x
299
- pad_l = (self.kernel_size - 1) // 2
300
- pad_r = self.kernel_size // 2
301
- padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302
- x = F.pad(x, commons.convert_pad_shape(padding))
303
- return x
 
 
 
1
  import math
2
+
3
  import torch
4
  from torch import nn
5
+ from torch.nn import functional as t_func
6
 
7
  import commons
 
8
  from modules import LayerNorm
9
+
10
 
11
  class Encoder(nn.Module):
12
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4,
13
+ **kwargs):
14
+ super().__init__()
15
+ self.hidden_channels = hidden_channels
16
+ self.filter_channels = filter_channels
17
+ self.n_heads = n_heads
18
+ self.n_layers = n_layers
19
+ self.kernel_size = kernel_size
20
+ self.p_dropout = p_dropout
21
+ self.window_size = window_size
22
+
23
+ self.drop = nn.Dropout(p_dropout)
24
+ self.attn_layers = nn.ModuleList()
25
+ self.norm_layers_1 = nn.ModuleList()
26
+ self.ffn_layers = nn.ModuleList()
27
+ self.norm_layers_2 = nn.ModuleList()
28
+ for i in range(self.n_layers):
29
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout,
30
+ window_size=window_size))
31
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
32
+ self.ffn_layers.append(
33
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
34
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
35
+
36
+ def forward(self, x, x_mask):
37
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
38
+ x = x * x_mask
39
+ for i in range(self.n_layers):
40
+ y = self.attn_layers[i](x, x, attn_mask)
41
+ y = self.drop(y)
42
+ x = self.norm_layers_1[i](x + y)
43
+
44
+ y = self.ffn_layers[i](x, x_mask)
45
+ y = self.drop(y)
46
+ x = self.norm_layers_2[i](x + y)
47
+ x = x * x_mask
48
+ return x
49
 
50
 
51
  class Decoder(nn.Module):
52
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.,
53
+ proximal_bias=False, proximal_init=True, **kwargs):
54
+ super().__init__()
55
+ self.hidden_channels = hidden_channels
56
+ self.filter_channels = filter_channels
57
+ self.n_heads = n_heads
58
+ self.n_layers = n_layers
59
+ self.kernel_size = kernel_size
60
+ self.p_dropout = p_dropout
61
+ self.proximal_bias = proximal_bias
62
+ self.proximal_init = proximal_init
63
+
64
+ self.drop = nn.Dropout(p_dropout)
65
+ self.self_attn_layers = nn.ModuleList()
66
+ self.norm_layers_0 = nn.ModuleList()
67
+ self.encdec_attn_layers = nn.ModuleList()
68
+ self.norm_layers_1 = nn.ModuleList()
69
+ self.ffn_layers = nn.ModuleList()
70
+ self.norm_layers_2 = nn.ModuleList()
71
+ for i in range(self.n_layers):
72
+ self.self_attn_layers.append(
73
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout,
74
+ proximal_bias=proximal_bias, proximal_init=proximal_init))
75
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
76
+ self.encdec_attn_layers.append(
77
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
78
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
79
+ self.ffn_layers.append(
80
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
81
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
82
+
83
+ def forward(self, x, x_mask, h, h_mask):
84
+ """
85
+ x: decoder input
86
+ h: encoder output
87
+ """
88
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
89
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
90
+ x = x * x_mask
91
+ for i in range(self.n_layers):
92
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
93
+ y = self.drop(y)
94
+ x = self.norm_layers_0[i](x + y)
95
+
96
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
97
+ y = self.drop(y)
98
+ x = self.norm_layers_1[i](x + y)
99
+
100
+ y = self.ffn_layers[i](x, x_mask)
101
+ y = self.drop(y)
102
+ x = self.norm_layers_2[i](x + y)
103
+ x = x * x_mask
104
+ return x
105
 
106
 
107
  class MultiHeadAttention(nn.Module):
108
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True,
109
+ block_length=None, proximal_bias=False, proximal_init=False):
110
+ super().__init__()
111
+ assert channels % n_heads == 0
112
+
113
+ self.channels = channels
114
+ self.out_channels = out_channels
115
+ self.n_heads = n_heads
116
+ self.p_dropout = p_dropout
117
+ self.window_size = window_size
118
+ self.heads_share = heads_share
119
+ self.block_length = block_length
120
+ self.proximal_bias = proximal_bias
121
+ self.proximal_init = proximal_init
122
+ self.attn = None
123
+
124
+ self.k_channels = channels // n_heads
125
+ self.conv_q = nn.Conv1d(channels, channels, 1)
126
+ self.conv_k = nn.Conv1d(channels, channels, 1)
127
+ self.conv_v = nn.Conv1d(channels, channels, 1)
128
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
129
+ self.drop = nn.Dropout(p_dropout)
130
+
131
+ if window_size is not None:
132
+ n_heads_rel = 1 if heads_share else n_heads
133
+ rel_stddev = self.k_channels ** -0.5
134
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
135
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
136
+
137
+ nn.init.xavier_uniform_(self.conv_q.weight)
138
+ nn.init.xavier_uniform_(self.conv_k.weight)
139
+ nn.init.xavier_uniform_(self.conv_v.weight)
140
+ if proximal_init:
141
+ with torch.no_grad():
142
+ self.conv_k.weight.copy_(self.conv_q.weight)
143
+ self.conv_k.bias.copy_(self.conv_q.bias)
144
+
145
+ def forward(self, x, c, attn_mask=None):
146
+ q = self.conv_q(x)
147
+ k = self.conv_k(c)
148
+ v = self.conv_v(c)
149
+
150
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
151
+
152
+ x = self.conv_o(x)
153
+ return x
154
+
155
+ def attention(self, query, key, value, mask=None):
156
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
157
+ b, d, t_s, t_t = (*key.size(), query.size(2))
158
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
159
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
160
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
161
+
162
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
163
+ if self.window_size is not None:
164
+ assert t_s == t_t, "Relative attention is only available for self-attention."
165
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
166
+ rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
167
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
168
+ scores = scores + scores_local
169
+ if self.proximal_bias:
170
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
171
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
172
+ if mask is not None:
173
+ scores = scores.masked_fill(mask == 0, -1e4)
174
+ if self.block_length is not None:
175
+ assert t_s == t_t, "Local attention is only available for self-attention."
176
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
177
+ scores = scores.masked_fill(block_mask == 0, -1e4)
178
+ p_attn = t_func.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
179
+ p_attn = self.drop(p_attn)
180
+ output = torch.matmul(p_attn, value)
181
+ if self.window_size is not None:
182
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
183
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
184
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
185
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
186
+ return output, p_attn
187
+
188
+ def _matmul_with_relative_values(self, x, y):
189
+ """
190
+ x: [b, h, l, m]
191
+ y: [h or 1, m, d]
192
+ ret: [b, h, l, d]
193
+ """
194
+ ret = torch.matmul(x, y.unsqueeze(0))
195
+ return ret
196
+
197
+ def _matmul_with_relative_keys(self, x, y):
198
+ """
199
+ x: [b, h, l, d]
200
+ y: [h or 1, m, d]
201
+ ret: [b, h, l, m]
202
+ """
203
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
204
+ return ret
205
+
206
+ def _get_relative_embeddings(self, relative_embeddings, length):
207
+ max_relative_position = 2 * self.window_size + 1
208
+ # Pad first before slice to avoid using cond ops.
209
+ pad_length = max(length - (self.window_size + 1), 0)
210
+ slice_start_position = max((self.window_size + 1) - length, 0)
211
+ slice_end_position = slice_start_position + 2 * length - 1
212
+ if pad_length > 0:
213
+ padded_relative_embeddings = t_func.pad(
214
+ relative_embeddings,
215
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
216
+ else:
217
+ padded_relative_embeddings = relative_embeddings
218
+ used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
219
+ return used_relative_embeddings
220
+
221
+ def _relative_position_to_absolute_position(self, x):
222
+ """
223
+ x: [b, h, l, 2*l-1]
224
+ ret: [b, h, l, l]
225
+ """
226
+ batch, heads, length, _ = x.size()
227
+ # Concat columns of pad to shift from relative to absolute indexing.
228
+ x = t_func.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
229
+
230
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
231
+ x_flat = x.view([batch, heads, length * 2 * length])
232
+ x_flat = t_func.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
233
+
234
+ # Reshape and slice out the padded elements.
235
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1:]
236
+ return x_final
237
+
238
+ def _absolute_position_to_relative_position(self, x):
239
+ """
240
+ x: [b, h, l, l]
241
+ ret: [b, h, l, 2*l-1]
242
+ """
243
+ batch, heads, length, _ = x.size()
244
+ # padd along column
245
+ x = t_func.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
246
+ x_flat = x.view([batch, heads, length ** 2 + length * (length - 1)])
247
+ # add 0's in the beginning that will skew the elements after reshape
248
+ x_flat = t_func.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
249
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
250
+ return x_final
251
+
252
+ def _attention_bias_proximal(self, length):
253
+ """Bias for self-attention to encourage attention to close positions.
254
+ Args:
255
+ length: an integer scalar.
256
+ Returns:
257
+ a Tensor with shape [1, 1, length, length]
258
+ """
259
+ r = torch.arange(length, dtype=torch.float32)
260
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
261
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
262
 
263
 
264
  class FFN(nn.Module):
265
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None,
266
+ causal=False):
267
+ super().__init__()
268
+ self.in_channels = in_channels
269
+ self.out_channels = out_channels
270
+ self.filter_channels = filter_channels
271
+ self.kernel_size = kernel_size
272
+ self.p_dropout = p_dropout
273
+ self.activation = activation
274
+ self.causal = causal
275
+
276
+ if causal:
277
+ self.padding = self._causal_padding
278
+ else:
279
+ self.padding = self._same_padding
280
+
281
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
282
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
283
+ self.drop = nn.Dropout(p_dropout)
284
+
285
+ def forward(self, x, x_mask):
286
+ x = self.conv_1(self.padding(x * x_mask))
287
+ if self.activation == "gelu":
288
+ x = x * torch.sigmoid(1.702 * x)
289
+ else:
290
+ x = torch.relu(x)
291
+ x = self.drop(x)
292
+ x = self.conv_2(self.padding(x * x_mask))
293
+ return x * x_mask
294
+
295
+ def _causal_padding(self, x):
296
+ if self.kernel_size == 1:
297
+ return x
298
+ pad_l = self.kernel_size - 1
299
+ pad_r = 0
300
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
301
+ x = t_func.pad(x, commons.convert_pad_shape(padding))
302
+ return x
303
+
304
+ def _same_padding(self, x):
305
+ if self.kernel_size == 1:
306
+ return x
307
+ pad_l = (self.kernel_size - 1) // 2
308
+ pad_r = self.kernel_size // 2
309
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
310
+ x = t_func.pad(x, commons.convert_pad_shape(padding))
311
+ return x
commons.py CHANGED
@@ -1,161 +1,160 @@
1
  import math
2
- import numpy as np
3
  import torch
4
- from torch import nn
5
- from torch.nn import functional as F
6
 
7
 
8
  def init_weights(m, mean=0.0, std=0.01):
9
- classname = m.__class__.__name__
10
- if classname.find("Conv") != -1:
11
- m.weight.data.normal_(mean, std)
12
 
13
 
14
  def get_padding(kernel_size, dilation=1):
15
- return int((kernel_size*dilation - dilation)/2)
16
 
17
 
18
  def convert_pad_shape(pad_shape):
19
- l = pad_shape[::-1]
20
- pad_shape = [item for sublist in l for item in sublist]
21
- return pad_shape
22
 
23
 
24
  def intersperse(lst, item):
25
- result = [item] * (len(lst) * 2 + 1)
26
- result[1::2] = lst
27
- return result
28
 
29
 
30
  def kl_divergence(m_p, logs_p, m_q, logs_q):
31
- """KL(P||Q)"""
32
- kl = (logs_q - logs_p) - 0.5
33
- kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
- return kl
35
 
36
 
37
  def rand_gumbel(shape):
38
- """Sample from the Gumbel distribution, protect from overflows."""
39
- uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
- return -torch.log(-torch.log(uniform_samples))
41
 
42
 
43
  def rand_gumbel_like(x):
44
- g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
- return g
46
 
47
 
48
  def slice_segments(x, ids_str, segment_size=4):
49
- ret = torch.zeros_like(x[:, :, :segment_size])
50
- for i in range(x.size(0)):
51
- idx_str = ids_str[i]
52
- idx_end = idx_str + segment_size
53
- ret[i] = x[i, :, idx_str:idx_end]
54
- return ret
55
 
56
 
57
  def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
- b, d, t = x.size()
59
- if x_lengths is None:
60
- x_lengths = t
61
- ids_str_max = x_lengths - segment_size + 1
62
- ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
- ret = slice_segments(x, ids_str, segment_size)
64
- return ret, ids_str
65
 
66
 
67
  def get_timing_signal_1d(
68
- length, channels, min_timescale=1.0, max_timescale=1.0e4):
69
- position = torch.arange(length, dtype=torch.float)
70
- num_timescales = channels // 2
71
- log_timescale_increment = (
72
- math.log(float(max_timescale) / float(min_timescale)) /
73
- (num_timescales - 1))
74
- inv_timescales = min_timescale * torch.exp(
75
- torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76
- scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
- signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
- signal = F.pad(signal, [0, 0, 0, channels % 2])
79
- signal = signal.view(1, channels, length)
80
- return signal
81
 
82
 
83
  def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
- b, channels, length = x.size()
85
- signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
- return x + signal.to(dtype=x.dtype, device=x.device)
87
 
88
 
89
  def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
- b, channels, length = x.size()
91
- signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
- return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
 
94
 
95
  def subsequent_mask(length):
96
- mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
- return mask
98
 
99
 
100
  @torch.jit.script
101
  def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
- n_channels_int = n_channels[0]
103
- in_act = input_a + input_b
104
- t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
- s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
- acts = t_act * s_act
107
- return acts
108
 
109
 
110
  def convert_pad_shape(pad_shape):
111
- l = pad_shape[::-1]
112
- pad_shape = [item for sublist in l for item in sublist]
113
- return pad_shape
114
 
115
 
116
  def shift_1d(x):
117
- x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
- return x
119
 
120
 
121
  def sequence_mask(length, max_length=None):
122
- if max_length is None:
123
- max_length = length.max()
124
- x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
- return x.unsqueeze(0) < length.unsqueeze(1)
126
 
127
 
128
  def generate_path(duration, mask):
129
- """
130
- duration: [b, 1, t_x]
131
- mask: [b, 1, t_y, t_x]
132
- """
133
- device = duration.device
134
-
135
- b, _, t_y, t_x = mask.shape
136
- cum_duration = torch.cumsum(duration, -1)
137
-
138
- cum_duration_flat = cum_duration.view(b * t_x)
139
- path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140
- path = path.view(b, t_x, t_y)
141
- path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142
- path = path.unsqueeze(1).transpose(2,3) * mask
143
- return path
144
 
145
 
146
  def clip_grad_value_(parameters, clip_value, norm_type=2):
147
- if isinstance(parameters, torch.Tensor):
148
- parameters = [parameters]
149
- parameters = list(filter(lambda p: p.grad is not None, parameters))
150
- norm_type = float(norm_type)
151
- if clip_value is not None:
152
- clip_value = float(clip_value)
153
-
154
- total_norm = 0
155
- for p in parameters:
156
- param_norm = p.grad.data.norm(norm_type)
157
- total_norm += param_norm.item() ** norm_type
158
  if clip_value is not None:
159
- p.grad.data.clamp_(min=-clip_value, max=clip_value)
160
- total_norm = total_norm ** (1. / norm_type)
161
- return total_norm
 
 
 
 
 
 
 
 
1
  import math
2
+
3
  import torch
4
+ from torch.nn import functional as t_func
 
5
 
6
 
7
  def init_weights(m, mean=0.0, std=0.01):
8
+ classname = m.__class__.__name__
9
+ if classname.find("Conv") != -1:
10
+ m.weight.data.normal_(mean, std)
11
 
12
 
13
  def get_padding(kernel_size, dilation=1):
14
+ return int((kernel_size * dilation - dilation) / 2)
15
 
16
 
17
  def convert_pad_shape(pad_shape):
18
+ l = pad_shape[::-1]
19
+ pad_shape = [item for sublist in l for item in sublist]
20
+ return pad_shape
21
 
22
 
23
  def intersperse(lst, item):
24
+ result = [item] * (len(lst) * 2 + 1)
25
+ result[1::2] = lst
26
+ return result
27
 
28
 
29
  def kl_divergence(m_p, logs_p, m_q, logs_q):
30
+ """KL(P||Q)"""
31
+ kl = (logs_q - logs_p) - 0.5
32
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2. * logs_q)
33
+ return kl
34
 
35
 
36
  def rand_gumbel(shape):
37
+ """Sample from the Gumbel distribution, protect from overflows."""
38
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
39
+ return -torch.log(-torch.log(uniform_samples))
40
 
41
 
42
  def rand_gumbel_like(x):
43
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
44
+ return g
45
 
46
 
47
  def slice_segments(x, ids_str, segment_size=4):
48
+ ret = torch.zeros_like(x[:, :, :segment_size])
49
+ for i in range(x.size(0)):
50
+ idx_str = ids_str[i]
51
+ idx_end = idx_str + segment_size
52
+ ret[i] = x[i, :, idx_str:idx_end]
53
+ return ret
54
 
55
 
56
  def rand_slice_segments(x, x_lengths=None, segment_size=4):
57
+ b, d, t = x.size()
58
+ if x_lengths is None:
59
+ x_lengths = t
60
+ ids_str_max = x_lengths - segment_size + 1
61
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
62
+ ret = slice_segments(x, ids_str, segment_size)
63
+ return ret, ids_str
64
 
65
 
66
  def get_timing_signal_1d(
67
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
68
+ position = torch.arange(length, dtype=torch.float)
69
+ num_timescales = channels // 2
70
+ log_timescale_increment = (
71
+ math.log(float(max_timescale) / float(min_timescale)) /
72
+ (num_timescales - 1))
73
+ inv_timescales = min_timescale * torch.exp(
74
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
75
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
76
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
77
+ signal = t_func.pad(signal, [0, 0, 0, channels % 2])
78
+ signal = signal.view(1, channels, length)
79
+ return signal
80
 
81
 
82
  def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
83
+ b, channels, length = x.size()
84
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
85
+ return x + signal.to(dtype=x.dtype, device=x.device)
86
 
87
 
88
  def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
89
+ b, channels, length = x.size()
90
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
91
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
92
 
93
 
94
  def subsequent_mask(length):
95
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
96
+ return mask
97
 
98
 
99
  @torch.jit.script
100
  def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
101
+ n_channels_int = n_channels[0]
102
+ in_act = input_a + input_b
103
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
104
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
105
+ acts = t_act * s_act
106
+ return acts
107
 
108
 
109
  def convert_pad_shape(pad_shape):
110
+ l = pad_shape[::-1]
111
+ pad_shape = [item for sublist in l for item in sublist]
112
+ return pad_shape
113
 
114
 
115
  def shift_1d(x):
116
+ x = t_func.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
117
+ return x
118
 
119
 
120
  def sequence_mask(length, max_length=None):
121
+ if max_length is None:
122
+ max_length = length.max()
123
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
124
+ return x.unsqueeze(0) < length.unsqueeze(1)
125
 
126
 
127
  def generate_path(duration, mask):
128
+ """
129
+ duration: [b, 1, t_x]
130
+ mask: [b, 1, t_y, t_x]
131
+ """
132
+ device = duration.device
133
+
134
+ b, _, t_y, t_x = mask.shape
135
+ cum_duration = torch.cumsum(duration, -1)
136
+
137
+ cum_duration_flat = cum_duration.view(b * t_x)
138
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
139
+ path = path.view(b, t_x, t_y)
140
+ path = path - t_func.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
141
+ path = path.unsqueeze(1).transpose(2, 3) * mask
142
+ return path
143
 
144
 
145
  def clip_grad_value_(parameters, clip_value, norm_type=2):
146
+ if isinstance(parameters, torch.Tensor):
147
+ parameters = [parameters]
148
+ parameters = list(filter(lambda para: para.grad is not None, parameters))
149
+ norm_type = float(norm_type)
 
 
 
 
 
 
 
150
  if clip_value is not None:
151
+ clip_value = float(clip_value)
152
+
153
+ total_norm = 0
154
+ for p in parameters:
155
+ param_norm = p.grad.data.norm(norm_type)
156
+ total_norm += param_norm.item() ** norm_type
157
+ if clip_value is not None:
158
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
159
+ total_norm = total_norm ** (1. / norm_type)
160
+ return total_norm
configs/nyarumul.json CHANGED
@@ -5,7 +5,10 @@
5
  "seed": 1234,
6
  "epochs": 10000,
7
  "learning_rate": 2e-4,
8
- "betas": [0.8, 0.99],
 
 
 
9
  "eps": 1e-9,
10
  "batch_size": 16,
11
  "fp16_run": true,
@@ -17,9 +20,11 @@
17
  "c_kl": 1.0
18
  },
19
  "data": {
20
- "training_files":"/content/drive/MyDrive/SingingVC/trainmul.txt",
21
- "validation_files":"/content/drive/MyDrive/SingingVC/valmul.txt",
22
- "text_cleaners":["english_cleaners2"],
 
 
23
  "max_wav_value": 32768.0,
24
  "sampling_rate": 22050,
25
  "filter_length": 1024,
@@ -29,7 +34,7 @@
29
  "mel_fmin": 0.0,
30
  "mel_fmax": null,
31
  "add_blank": true,
32
- "n_speakers": 3,
33
  "cleaned_text": true
34
  },
35
  "model": {
@@ -41,13 +46,51 @@
41
  "kernel_size": 3,
42
  "p_dropout": 0.1,
43
  "resblock": "1",
44
- "resblock_kernel_sizes": [3,7,11],
45
- "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46
- "upsample_rates": [8,8,2,2],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  "upsample_initial_channel": 512,
48
- "upsample_kernel_sizes": [16,16,4,4],
 
 
 
 
 
49
  "n_layers_q": 3,
50
  "use_spectral_norm": false,
51
  "gin_channels": 256
52
- }
 
 
 
 
 
 
 
 
53
  }
 
5
  "seed": 1234,
6
  "epochs": 10000,
7
  "learning_rate": 2e-4,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
  "eps": 1e-9,
13
  "batch_size": 16,
14
  "fp16_run": true,
 
20
  "c_kl": 1.0
21
  },
22
  "data": {
23
+ "training_files": "/root/sovits/filelist/train.txt",
24
+ "validation_files": "/root/sovits/filelist/val.txt",
25
+ "text_cleaners": [
26
+ "english_cleaners2"
27
+ ],
28
  "max_wav_value": 32768.0,
29
  "sampling_rate": 22050,
30
  "filter_length": 1024,
 
34
  "mel_fmin": 0.0,
35
  "mel_fmax": null,
36
  "add_blank": true,
37
+ "n_speakers": 8,
38
  "cleaned_text": true
39
  },
40
  "model": {
 
46
  "kernel_size": 3,
47
  "p_dropout": 0.1,
48
  "resblock": "1",
49
+ "resblock_kernel_sizes": [
50
+ 3,
51
+ 7,
52
+ 11
53
+ ],
54
+ "resblock_dilation_sizes": [
55
+ [
56
+ 1,
57
+ 3,
58
+ 5
59
+ ],
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ]
70
+ ],
71
+ "upsample_rates": [
72
+ 8,
73
+ 8,
74
+ 2,
75
+ 2
76
+ ],
77
  "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4
83
+ ],
84
  "n_layers_q": 3,
85
  "use_spectral_norm": false,
86
  "gin_channels": 256
87
+ },
88
+ "speakers": [
89
+ "nyaru",
90
+ "taffy",
91
+ "yunhao",
92
+ "jishuang",
93
+ "yilanqiu",
94
+ "opencpop"
95
+ ]
96
  }
configs/sovits_pre.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 2000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 2e-4,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-9,
13
+ "batch_size": 16,
14
+ "fp16_run": true,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0
21
+ },
22
+ "data": {
23
+ "training_files": "/root/sovits/filelist/train.txt",
24
+ "validation_files": "/root/sovits/filelist/val.txt",
25
+ "text_cleaners": [
26
+ "english_cleaners2"
27
+ ],
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 44100,
30
+ "filter_length": 2048,
31
+ "hop_length": 512,
32
+ "win_length": 2048,
33
+ "n_mel_channels": 128,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null,
36
+ "add_blank": true,
37
+ "n_speakers": 4,
38
+ "cleaned_text": true
39
+ },
40
+ "model": {
41
+ "inter_channels": 192,
42
+ "hidden_channels": 256,
43
+ "filter_channels": 768,
44
+ "n_heads": 2,
45
+ "n_layers": 6,
46
+ "kernel_size": 3,
47
+ "p_dropout": 0.1,
48
+ "resblock": "1",
49
+ "resblock_kernel_sizes": [
50
+ 3,
51
+ 7,
52
+ 11
53
+ ],
54
+ "resblock_dilation_sizes": [
55
+ [
56
+ 1,
57
+ 3,
58
+ 5
59
+ ],
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ]
70
+ ],
71
+ "upsample_rates": [
72
+ 8,
73
+ 8,
74
+ 4,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256
87
+ },
88
+ "speakers": [
89
+ "yilanqiu",
90
+ "opencpop",
91
+ "yunhao",
92
+ "jishuang"
93
+ ]
94
+ }
configs/{nyarusing.json → yilanqiu.json} RENAMED
@@ -3,11 +3,14 @@
3
  "log_interval": 200,
4
  "eval_interval": 2000,
5
  "seed": 1234,
6
- "epochs": 20000,
7
  "learning_rate": 2e-4,
8
- "betas": [0.8, 0.99],
 
 
 
9
  "eps": 1e-9,
10
- "batch_size": 24,
11
  "fp16_run": true,
12
  "lr_decay": 0.999875,
13
  "segment_size": 8192,
@@ -17,9 +20,11 @@
17
  "c_kl": 1.0
18
  },
19
  "data": {
20
- "training_files":"/content/train.txt",
21
- "validation_files":"/content/nyarusing/val.txt",
22
- "text_cleaners":["english_cleaners2"],
 
 
23
  "max_wav_value": 32768.0,
24
  "sampling_rate": 22050,
25
  "filter_length": 1024,
@@ -29,7 +34,7 @@
29
  "mel_fmin": 0.0,
30
  "mel_fmax": null,
31
  "add_blank": true,
32
- "n_speakers": 0,
33
  "cleaned_text": true
34
  },
35
  "model": {
@@ -41,12 +46,48 @@
41
  "kernel_size": 3,
42
  "p_dropout": 0.1,
43
  "resblock": "1",
44
- "resblock_kernel_sizes": [3,7,11],
45
- "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46
- "upsample_rates": [8,8,2,2],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  "upsample_initial_channel": 512,
48
- "upsample_kernel_sizes": [16,16,4,4],
 
 
 
 
 
49
  "n_layers_q": 3,
50
- "use_spectral_norm": false
51
- }
 
 
 
 
 
 
52
  }
 
3
  "log_interval": 200,
4
  "eval_interval": 2000,
5
  "seed": 1234,
6
+ "epochs": 10000,
7
  "learning_rate": 2e-4,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
  "eps": 1e-9,
13
+ "batch_size": 16,
14
  "fp16_run": true,
15
  "lr_decay": 0.999875,
16
  "segment_size": 8192,
 
20
  "c_kl": 1.0
21
  },
22
  "data": {
23
+ "training_files": "/root/content/qiu/train.txt",
24
+ "validation_files": "/root/content/qiu/val.txt",
25
+ "text_cleaners": [
26
+ "english_cleaners2"
27
+ ],
28
  "max_wav_value": 32768.0,
29
  "sampling_rate": 22050,
30
  "filter_length": 1024,
 
34
  "mel_fmin": 0.0,
35
  "mel_fmax": null,
36
  "add_blank": true,
37
+ "n_speakers": 3,
38
  "cleaned_text": true
39
  },
40
  "model": {
 
46
  "kernel_size": 3,
47
  "p_dropout": 0.1,
48
  "resblock": "1",
49
+ "resblock_kernel_sizes": [
50
+ 3,
51
+ 7,
52
+ 11
53
+ ],
54
+ "resblock_dilation_sizes": [
55
+ [
56
+ 1,
57
+ 3,
58
+ 5
59
+ ],
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ]
70
+ ],
71
+ "upsample_rates": [
72
+ 8,
73
+ 8,
74
+ 2,
75
+ 2
76
+ ],
77
  "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4
83
+ ],
84
  "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256
87
+ },
88
+ "speakers": [
89
+ "maolei",
90
+ "x",
91
+ "yilanqiu"
92
+ ]
93
  }
data_utils.py CHANGED
@@ -1,14 +1,12 @@
1
- import time
2
  import os
3
  import random
 
4
  import numpy as np
5
  import torch
6
  import torch.utils.data
7
- import numpy as np
8
- import commons
9
  from mel_processing import spectrogram_torch
 
10
  from utils import load_wav_to_torch, load_filepaths_and_text
11
- from text import text_to_sequence, cleaned_text_to_sequence
12
 
13
 
14
  def dropout1d(myarray, ratio=0.5):
@@ -59,11 +57,11 @@ class TextAudioLoader(torch.utils.data.Dataset):
59
 
60
  def get_audio_text_pair(self, audiopath_and_text):
61
  # separate filename and text
62
- audiopath, text, pitch = audiopath_and_text[0], audiopath_and_text[1],audiopath_and_text[2]
63
  text = self.get_text(text)
64
  spec, wav = self.get_audio(audiopath)
65
  pitch = self.get_pitch(pitch)
66
- return (text, spec, wav, pitch)
67
 
68
  def get_pitch(self, pitch):
69
 
@@ -99,7 +97,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
99
  return len(self.audiopaths_and_text)
100
 
101
 
102
- class TextAudioCollate():
103
  """ Zero-pads model inputs and targets
104
  """
105
 
@@ -123,7 +121,6 @@ class TextAudioCollate():
123
  max_pitch_len = max([x[3].shape[0] for x in batch])
124
  # print(batch)
125
 
126
-
127
  text_lengths = torch.LongTensor(len(batch))
128
  spec_lengths = torch.LongTensor(len(batch))
129
  wav_lengths = torch.LongTensor(len(batch))
@@ -205,13 +202,14 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
205
 
206
  def get_audio_text_speaker_pair(self, audiopath_sid_text):
207
  # separate filename, speaker_id and text
208
- audiopath, sid, text, pitch = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2], audiopath_sid_text[3]
 
209
  text = self.get_text(text)
210
  spec, wav = self.get_audio(audiopath)
211
  sid = self.get_sid(sid)
212
  pitch = self.get_pitch(pitch)
213
 
214
- return (text, spec, wav, pitch, sid)
215
 
216
  def get_audio(self, filename):
217
  audio, sampling_rate = load_wav_to_torch(filename)
@@ -235,7 +233,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
235
  soft = np.load(text)
236
  text_norm = torch.FloatTensor(soft)
237
  return text_norm
238
-
239
  def get_pitch(self, pitch):
240
  return torch.LongTensor(np.load(pitch))
241
 
@@ -250,7 +248,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
250
  return len(self.audiopaths_sid_text)
251
 
252
 
253
- class TextAudioSpeakerCollate():
254
  """ Zero-pads model inputs and targets
255
  """
256
 
@@ -310,7 +308,7 @@ class TextAudioSpeakerCollate():
310
 
311
  if self.return_ids:
312
  return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid, ids_sorted_decreasing
313
- return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths,pitch_padded , sid
314
 
315
 
316
  class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
@@ -400,7 +398,7 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
400
 
401
  if hi > lo:
402
  mid = (hi + lo) // 2
403
- if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
404
  return mid
405
  elif x <= self.boundaries[mid]:
406
  return self._bisect(x, lo, mid)
 
 
1
  import os
2
  import random
3
+
4
  import numpy as np
5
  import torch
6
  import torch.utils.data
 
 
7
  from mel_processing import spectrogram_torch
8
+
9
  from utils import load_wav_to_torch, load_filepaths_and_text
 
10
 
11
 
12
  def dropout1d(myarray, ratio=0.5):
 
57
 
58
  def get_audio_text_pair(self, audiopath_and_text):
59
  # separate filename and text
60
+ audiopath, text, pitch = audiopath_and_text[0], audiopath_and_text[1], audiopath_and_text[2]
61
  text = self.get_text(text)
62
  spec, wav = self.get_audio(audiopath)
63
  pitch = self.get_pitch(pitch)
64
+ return text, spec, wav, pitch
65
 
66
  def get_pitch(self, pitch):
67
 
 
97
  return len(self.audiopaths_and_text)
98
 
99
 
100
+ class TextAudioCollate:
101
  """ Zero-pads model inputs and targets
102
  """
103
 
 
121
  max_pitch_len = max([x[3].shape[0] for x in batch])
122
  # print(batch)
123
 
 
124
  text_lengths = torch.LongTensor(len(batch))
125
  spec_lengths = torch.LongTensor(len(batch))
126
  wav_lengths = torch.LongTensor(len(batch))
 
202
 
203
  def get_audio_text_speaker_pair(self, audiopath_sid_text):
204
  # separate filename, speaker_id and text
205
+ audiopath, sid, text, pitch = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2], \
206
+ audiopath_sid_text[3]
207
  text = self.get_text(text)
208
  spec, wav = self.get_audio(audiopath)
209
  sid = self.get_sid(sid)
210
  pitch = self.get_pitch(pitch)
211
 
212
+ return text, spec, wav, pitch, sid
213
 
214
  def get_audio(self, filename):
215
  audio, sampling_rate = load_wav_to_torch(filename)
 
233
  soft = np.load(text)
234
  text_norm = torch.FloatTensor(soft)
235
  return text_norm
236
+
237
  def get_pitch(self, pitch):
238
  return torch.LongTensor(np.load(pitch))
239
 
 
248
  return len(self.audiopaths_sid_text)
249
 
250
 
251
+ class TextAudioSpeakerCollate:
252
  """ Zero-pads model inputs and targets
253
  """
254
 
 
308
 
309
  if self.return_ids:
310
  return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid, ids_sorted_decreasing
311
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid
312
 
313
 
314
  class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
 
398
 
399
  if hi > lo:
400
  mid = (hi + lo) // 2
401
+ if self.boundaries[mid] < x <= self.boundaries[mid + 1]:
402
  return mid
403
  elif x <= self.boundaries[mid]:
404
  return self._bisect(x, lo, mid)
hubert.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e82e7d079df05fe3aa535f6f7d42d309bdae1d2a53324e2b2386c56721f4f649
3
+ size 378435957
hubert_model.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
58
+ x, mask = self.encode(x)
59
+ x = self.proj(x)
60
+ logits = self.logits(x)
61
+ return logits, mask
62
+
63
+
64
+ class HubertSoft(Hubert):
65
+ def __init__(self):
66
+ super().__init__()
67
+
68
+ @torch.inference_mode()
69
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
70
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
71
+ x, _ = self.encode(wav)
72
+ return self.proj(x)
73
+
74
+
75
+ class FeatureExtractor(nn.Module):
76
+ def __init__(self):
77
+ super().__init__()
78
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
79
+ self.norm0 = nn.GroupNorm(512, 512)
80
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
81
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
82
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
83
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
84
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
85
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
86
+
87
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
88
+ x = t_func.gelu(self.norm0(self.conv0(x)))
89
+ x = t_func.gelu(self.conv1(x))
90
+ x = t_func.gelu(self.conv2(x))
91
+ x = t_func.gelu(self.conv3(x))
92
+ x = t_func.gelu(self.conv4(x))
93
+ x = t_func.gelu(self.conv5(x))
94
+ x = t_func.gelu(self.conv6(x))
95
+ return x
96
+
97
+
98
+ class FeatureProjection(nn.Module):
99
+ def __init__(self):
100
+ super().__init__()
101
+ self.norm = nn.LayerNorm(512)
102
+ self.projection = nn.Linear(512, 768)
103
+ self.dropout = nn.Dropout(0.1)
104
+
105
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
106
+ x = self.norm(x)
107
+ x = self.projection(x)
108
+ x = self.dropout(x)
109
+ return x
110
+
111
+
112
+ class PositionalConvEmbedding(nn.Module):
113
+ def __init__(self):
114
+ super().__init__()
115
+ self.conv = nn.Conv1d(
116
+ 768,
117
+ 768,
118
+ kernel_size=128,
119
+ padding=128 // 2,
120
+ groups=16,
121
+ )
122
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
123
+
124
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
125
+ x = self.conv(x.transpose(1, 2))
126
+ x = t_func.gelu(x[:, :, :-1])
127
+ return x.transpose(1, 2)
128
+
129
+
130
+ class TransformerEncoder(nn.Module):
131
+ def __init__(
132
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
133
+ ) -> None:
134
+ super(TransformerEncoder, self).__init__()
135
+ self.layers = nn.ModuleList(
136
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
137
+ )
138
+ self.num_layers = num_layers
139
+
140
+ def forward(
141
+ self,
142
+ src: torch.Tensor,
143
+ mask: torch.Tensor = None,
144
+ src_key_padding_mask: torch.Tensor = None,
145
+ output_layer: Optional[int] = None,
146
+ ) -> torch.Tensor:
147
+ output = src
148
+ for layer in self.layers[:output_layer]:
149
+ output = layer(
150
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
151
+ )
152
+ return output
153
+
154
+
155
+ def _compute_mask(
156
+ shape: Tuple[int, int],
157
+ mask_prob: float,
158
+ mask_length: int,
159
+ device: torch.device,
160
+ min_masks: int = 0,
161
+ ) -> torch.Tensor:
162
+ batch_size, sequence_length = shape
163
+
164
+ if mask_length < 1:
165
+ raise ValueError("`mask_length` has to be bigger than 0.")
166
+
167
+ if mask_length > sequence_length:
168
+ raise ValueError(
169
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
170
+ )
171
+
172
+ # compute number of masked spans in batch
173
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
174
+ num_masked_spans = max(num_masked_spans, min_masks)
175
+
176
+ # make sure num masked indices <= sequence_length
177
+ if num_masked_spans * mask_length > sequence_length:
178
+ num_masked_spans = sequence_length // mask_length
179
+
180
+ # SpecAugment mask to fill
181
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
182
+
183
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
184
+ uniform_dist = torch.ones(
185
+ (batch_size, sequence_length - (mask_length - 1)), device=device
186
+ )
187
+
188
+ # get random indices to mask
189
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
190
+
191
+ # expand masked indices to masked spans
192
+ mask_indices = (
193
+ mask_indices.unsqueeze(dim=-1)
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ offsets = (
198
+ torch.arange(mask_length, device=device)[None, None, :]
199
+ .expand((batch_size, num_masked_spans, mask_length))
200
+ .reshape(batch_size, num_masked_spans * mask_length)
201
+ )
202
+ mask_idxs = mask_indices + offsets
203
+
204
+ # scatter indices to mask
205
+ mask = mask.scatter(1, mask_idxs, True)
206
+
207
+ return mask
208
+
209
+
210
+ def hubert_soft(
211
+ path: str
212
+ ) -> HubertSoft:
213
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
214
+ Args:
215
+ path (str): path of a pretrained model
216
+ """
217
+ dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
218
+ hubert = HubertSoft()
219
+ checkpoint = torch.load(path)
220
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
221
+ hubert.load_state_dict(checkpoint)
222
+ hubert.eval().to(dev)
223
+ return hubert
infer_tool.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ import soundfile
7
+ import torch
8
+ import torchaudio
9
+
10
+ import hubert_model
11
+ import utils
12
+ from models import SynthesizerTrn
13
+ from preprocess_wave import FeatureInput
14
+
15
+ dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
+
17
+
18
+ def timeit(func):
19
+ def run(*args, **kwargs):
20
+ t = time.time()
21
+ res = func(*args, **kwargs)
22
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
23
+ return res
24
+
25
+ return run
26
+
27
+
28
+ def get_end_file(dir_path, end):
29
+ file_lists = []
30
+ for root, dirs, files in os.walk(dir_path):
31
+ files = [f for f in files if f[0] != '.']
32
+ dirs[:] = [d for d in dirs if d[0] != '.']
33
+ for f_file in files:
34
+ if f_file.endswith(end):
35
+ file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
36
+ return file_lists
37
+
38
+
39
+ def load_model(model_path, config_path):
40
+ # 获取模型配置
41
+ hps_ms = utils.get_hparams_from_file(config_path)
42
+ n_g_ms = SynthesizerTrn(
43
+ 178,
44
+ hps_ms.data.filter_length // 2 + 1,
45
+ hps_ms.train.segment_size // hps_ms.data.hop_length,
46
+ n_speakers=hps_ms.data.n_speakers,
47
+ **hps_ms.model)
48
+ _ = utils.load_checkpoint(model_path, n_g_ms, None)
49
+ _ = n_g_ms.eval().to(dev)
50
+ # 加载hubert
51
+ hubert_soft = hubert_model.hubert_soft(get_end_file("./", "pt")[0])
52
+ feature_input = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length)
53
+ return n_g_ms, hubert_soft, feature_input, hps_ms
54
+
55
+
56
+ def resize2d_f0(x, target_len):
57
+ source = np.array(x)
58
+ source[source < 0.001] = np.nan
59
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
60
+ source)
61
+ res = np.nan_to_num(target)
62
+ return res
63
+
64
+
65
+ def get_units(audio, sr, hubert_soft):
66
+ source = torchaudio.functional.resample(audio, sr, 16000)
67
+ source = source.unsqueeze(0).to(dev)
68
+ with torch.inference_mode():
69
+ units = hubert_soft.units(source)
70
+ return units
71
+
72
+
73
+ def transcribe(source_path, length, transform, feature_input):
74
+ feature_pit = feature_input.compute_f0(source_path)
75
+ feature_pit = feature_pit * 2 ** (transform / 12)
76
+ feature_pit = resize2d_f0(feature_pit, length)
77
+ coarse_pit = feature_input.coarse_f0(feature_pit)
78
+ return coarse_pit
79
+
80
+
81
+ def get_unit_pitch(in_path, tran, hubert_soft, feature_input):
82
+ audio, sample_rate = torchaudio.load(in_path)
83
+ soft = get_units(audio, sample_rate, hubert_soft).squeeze(0).cpu().numpy()
84
+ input_pitch = transcribe(in_path, soft.shape[0], tran, feature_input)
85
+ return soft, input_pitch
86
+
87
+
88
+ def clean_pitch(input_pitch):
89
+ num_nan = np.sum(input_pitch == 1)
90
+ if num_nan / len(input_pitch) > 0.9:
91
+ input_pitch[input_pitch != 1] = 1
92
+ return input_pitch
93
+
94
+
95
+ def plt_pitch(input_pitch):
96
+ input_pitch = input_pitch.astype(float)
97
+ input_pitch[input_pitch == 1] = np.nan
98
+ return input_pitch
99
+
100
+
101
+ def f0_to_pitch(ff):
102
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
103
+ return f0_pitch
104
+
105
+
106
+ def f0_plt(in_path, out_path, tran, hubert_soft, feature_input):
107
+ s1, input_pitch = get_unit_pitch(in_path, tran, hubert_soft, feature_input)
108
+ s2, output_pitch = get_unit_pitch(out_path, 0, hubert_soft, feature_input)
109
+ plt.clf()
110
+ plt.plot(plt_pitch(input_pitch), color="#66ccff")
111
+ plt.plot(plt_pitch(output_pitch), color="orange")
112
+ plt.savefig("temp.jpg")
113
+
114
+
115
+ def calc_error(in_path, out_path, tran, feature_input):
116
+ input_pitch = feature_input.compute_f0(in_path)
117
+ output_pitch = feature_input.compute_f0(out_path)
118
+ sum_y = []
119
+ if np.sum(input_pitch == 0) / len(input_pitch) > 0.9:
120
+ mistake, var_take = 0, 0
121
+ else:
122
+ for i in range(min(len(input_pitch), len(output_pitch))):
123
+ if input_pitch[i] > 0 and output_pitch[i] > 0:
124
+ sum_y.append(abs(f0_to_pitch(output_pitch[i]) - (f0_to_pitch(input_pitch[i]) + tran)))
125
+ num_y = 0
126
+ for x in sum_y:
127
+ num_y += x
128
+ len_y = len(sum_y) if len(sum_y) else 1
129
+ mistake = round(float(num_y / len_y), 2)
130
+ var_take = round(float(np.std(sum_y, ddof=1)), 2)
131
+ return mistake, var_take
132
+
133
+
134
+ def infer(source_path, speaker_id, tran, net_g_ms, hubert_soft, feature_input):
135
+ sid = torch.LongTensor([int(speaker_id)]).to(dev)
136
+ soft, pitch = get_unit_pitch(source_path, tran, hubert_soft, feature_input)
137
+ pitch = torch.LongTensor(clean_pitch(pitch)).unsqueeze(0).to(dev)
138
+ stn_tst = torch.FloatTensor(soft)
139
+ with torch.no_grad():
140
+ x_tst = stn_tst.unsqueeze(0).to(dev)
141
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
142
+ audio = \
143
+ net_g_ms.infer(x_tst, x_tst_lengths, pitch, sid=sid, noise_scale=0.3, noise_scale_w=0.5,
144
+ length_scale=1)[0][
145
+ 0, 0].data.float().cpu().numpy()
146
+ return audio, audio.shape[-1]
147
+
148
+
149
+ def del_temp_wav(path_data):
150
+ for i in get_end_file(path_data, "wav"): # os.listdir(path_data)#返回一个列表,里面是当前目录下面的所有东西的相对路径
151
+ os.remove(i)
152
+
153
+
154
+ def format_wav(audio_path, tar_sample):
155
+ raw_audio, raw_sample_rate = torchaudio.load(audio_path)
156
+ tar_audio = torchaudio.transforms.Resample(orig_freq=raw_sample_rate, new_freq=tar_sample)(raw_audio)[0]
157
+ soundfile.write(audio_path[:-4] + ".wav", tar_audio, tar_sample)
158
+ return tar_audio, tar_sample
159
+
160
+
161
+ def fill_a_to_b(a, b):
162
+ if len(a) < len(b):
163
+ for _ in range(0, len(b) - len(a)):
164
+ a.append(a[0])
165
+
166
+
167
+ def mkdir(paths: list):
168
+ for path in paths:
169
+ if not os.path.exists(path):
170
+ os.mkdir(path)
losses.py DELETED
@@ -1,61 +0,0 @@
1
- import torch
2
- from torch.nn import functional as F
3
-
4
- import commons
5
-
6
-
7
- def feature_loss(fmap_r, fmap_g):
8
- loss = 0
9
- for dr, dg in zip(fmap_r, fmap_g):
10
- for rl, gl in zip(dr, dg):
11
- rl = rl.float().detach()
12
- gl = gl.float()
13
- loss += torch.mean(torch.abs(rl - gl))
14
-
15
- return loss * 2
16
-
17
-
18
- def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
- loss = 0
20
- r_losses = []
21
- g_losses = []
22
- for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
- dr = dr.float()
24
- dg = dg.float()
25
- r_loss = torch.mean((1-dr)**2)
26
- g_loss = torch.mean(dg**2)
27
- loss += (r_loss + g_loss)
28
- r_losses.append(r_loss.item())
29
- g_losses.append(g_loss.item())
30
-
31
- return loss, r_losses, g_losses
32
-
33
-
34
- def generator_loss(disc_outputs):
35
- loss = 0
36
- gen_losses = []
37
- for dg in disc_outputs:
38
- dg = dg.float()
39
- l = torch.mean((1-dg)**2)
40
- gen_losses.append(l)
41
- loss += l
42
-
43
- return loss, gen_losses
44
-
45
-
46
- def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
- """
48
- z_p, logs_q: [b, h, t_t]
49
- m_p, logs_p: [b, h, t_t]
50
- """
51
- z_p = z_p.float()
52
- logs_q = logs_q.float()
53
- m_p = m_p.float()
54
- logs_p = logs_p.float()
55
- z_mask = z_mask.float()
56
-
57
- kl = logs_p - logs_q - 0.5
58
- kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
- kl = torch.sum(kl * z_mask)
60
- l = kl / torch.sum(z_mask)
61
- return l
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mel_processing.py DELETED
@@ -1,112 +0,0 @@
1
- import math
2
- import os
3
- import random
4
- import torch
5
- from torch import nn
6
- import torch.nn.functional as F
7
- import torch.utils.data
8
- import numpy as np
9
- import librosa
10
- import librosa.util as librosa_util
11
- from librosa.util import normalize, pad_center, tiny
12
- from scipy.signal import get_window
13
- from scipy.io.wavfile import read
14
- from librosa.filters import mel as librosa_mel_fn
15
-
16
- MAX_WAV_VALUE = 32768.0
17
-
18
-
19
- def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
- """
21
- PARAMS
22
- ------
23
- C: compression factor
24
- """
25
- return torch.log(torch.clamp(x, min=clip_val) * C)
26
-
27
-
28
- def dynamic_range_decompression_torch(x, C=1):
29
- """
30
- PARAMS
31
- ------
32
- C: compression factor used to compress
33
- """
34
- return torch.exp(x) / C
35
-
36
-
37
- def spectral_normalize_torch(magnitudes):
38
- output = dynamic_range_compression_torch(magnitudes)
39
- return output
40
-
41
-
42
- def spectral_de_normalize_torch(magnitudes):
43
- output = dynamic_range_decompression_torch(magnitudes)
44
- return output
45
-
46
-
47
- mel_basis = {}
48
- hann_window = {}
49
-
50
-
51
- def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
- if torch.min(y) < -1.:
53
- print('min value is ', torch.min(y))
54
- if torch.max(y) > 1.:
55
- print('max value is ', torch.max(y))
56
-
57
- global hann_window
58
- dtype_device = str(y.dtype) + '_' + str(y.device)
59
- wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
- if wnsize_dtype_device not in hann_window:
61
- hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
-
63
- y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
- y = y.squeeze(1)
65
-
66
- spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
- center=center, pad_mode='reflect', normalized=False, onesided=True)
68
-
69
- spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
- return spec
71
-
72
-
73
- def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
- global mel_basis
75
- dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
- fmax_dtype_device = str(fmax) + '_' + dtype_device
77
- if fmax_dtype_device not in mel_basis:
78
- mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
79
- mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
- spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
- spec = spectral_normalize_torch(spec)
82
- return spec
83
-
84
-
85
- def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
- if torch.min(y) < -1.:
87
- print('min value is ', torch.min(y))
88
- if torch.max(y) > 1.:
89
- print('max value is ', torch.max(y))
90
-
91
- global mel_basis, hann_window
92
- dtype_device = str(y.dtype) + '_' + str(y.device)
93
- fmax_dtype_device = str(fmax) + '_' + dtype_device
94
- wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
- if fmax_dtype_device not in mel_basis:
96
- mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
97
- mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
- if wnsize_dtype_device not in hann_window:
99
- hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
-
101
- y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
- y = y.squeeze(1)
103
-
104
- spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
- center=center, pad_mode='reflect', normalized=False, onesided=True)
106
-
107
- spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
-
109
- spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
- spec = spectral_normalize_torch(spec)
111
-
112
- return spec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models.py CHANGED
@@ -1,16 +1,15 @@
1
- import copy
2
  import math
 
 
3
  import torch
4
  from torch import nn
 
5
  from torch.nn import functional as F
6
- import numpy as np
 
 
7
  import commons
8
  import modules
9
- import attentions
10
- import monotonic_align
11
-
12
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
  from commons import init_weights, get_padding
15
 
16
 
@@ -492,8 +491,8 @@ class SynthesizerTrn(nn.Module):
492
  self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
493
  gin_channels=gin_channels)
494
  self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
495
- self.pitch_net = PitchPredictor(n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers,
496
- kernel_size, p_dropout)
497
 
498
  if use_sdp:
499
  self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
@@ -503,75 +502,8 @@ class SynthesizerTrn(nn.Module):
503
  if n_speakers > 1:
504
  self.emb_g = nn.Embedding(n_speakers, gin_channels)
505
 
506
- def forward(self, x, x_lengths, y, y_lengths, pitch, sid=None):
507
-
508
- x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, pitch)
509
- # print(f"x: {x.shape}")
510
- pred_pitch, pitch_embedding = self.pitch_net(x, x_mask)
511
- # print(f"pred_pitch: {pred_pitch.shape}")
512
- # print(f"pitch_embedding: {pitch_embedding.shape}")
513
- x = x + pitch_embedding
514
- lf0 = torch.unsqueeze(pred_pitch, -1)
515
- gt_lf0 = torch.log(440 * (2 ** ((pitch.float() - 69) / 12)))
516
- gt_lf0 = gt_lf0.to(x.device)
517
- x_mask_sum = torch.sum(x_mask)
518
- lf0 = lf0.squeeze()
519
- l_pitch = torch.sum((gt_lf0 - lf0) ** 2, 1) / x_mask_sum
520
-
521
- if self.n_speakers > 0:
522
- g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
523
- else:
524
- g = None
525
-
526
- z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
527
- # print(f"z: {z.shape}")
528
-
529
- z_p = self.flow(z, y_mask, g=g)
530
- # print(f"z_p: {z_p.shape}")
531
-
532
- with torch.no_grad():
533
- # negative cross-entropy
534
- s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
535
- neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
536
- neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2),
537
- s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
538
- neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
539
- neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
540
- neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
541
-
542
- attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
543
- attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
544
-
545
- w = attn.sum(2)
546
- if self.use_sdp:
547
- l_length = self.dp(x, x_mask, w, g=g)
548
- l_length = l_length / torch.sum(x_mask)
549
- else:
550
- logw_ = torch.log(w + 1e-6) * x_mask
551
- logw = self.dp(x, x_mask, g=g)
552
- l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging
553
-
554
- # expand prior
555
- # print()
556
- # print(f"attn: {attn.shape}")
557
- # print(f"m_p: {m_p.shape}")
558
- # print(f"logs_p: {logs_p.shape}")
559
-
560
- m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
561
- logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
562
- # print(f"m_p: {m_p.shape}")
563
- # print(f"logs_p: {logs_p.shape}")
564
-
565
- z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
566
- # print(f"z_slice: {z_slice.shape}")
567
-
568
- o = self.dec(z_slice, g=g)
569
- return o, l_length, l_pitch, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
570
-
571
  def infer(self, x, x_lengths, pitch, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
572
  x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, pitch)
573
- pred_pitch, pitch_embedding = self.pitch_net(x, x_mask)
574
- x = x + pitch_embedding
575
  if self.n_speakers > 0:
576
  g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
577
  else:
@@ -622,4 +554,3 @@ class SynthesizerTrn(nn.Module):
622
  z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
623
  o_hat = self.dec(z_hat * y_mask, g=g_tgt)
624
  return o_hat, y_mask, (z, z_p, z_hat)
625
-
 
 
1
  import math
2
+ import math
3
+
4
  import torch
5
  from torch import nn
6
+ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
7
  from torch.nn import functional as F
8
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
9
+
10
+ import attentions
11
  import commons
12
  import modules
 
 
 
 
 
13
  from commons import init_weights, get_padding
14
 
15
 
 
491
  self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
492
  gin_channels=gin_channels)
493
  self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
494
+ # self.pitch_net = PitchPredictor(n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers,
495
+ # kernel_size, p_dropout)
496
 
497
  if use_sdp:
498
  self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
 
502
  if n_speakers > 1:
503
  self.emb_g = nn.Embedding(n_speakers, gin_channels)
504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505
  def infer(self, x, x_lengths, pitch, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
506
  x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, pitch)
 
 
507
  if self.n_speakers > 0:
508
  g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
509
  else:
 
554
  z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
555
  o_hat = self.dec(z_hat * y_mask, g=g_tgt)
556
  return o_hat, y_mask, (z, z_p, z_hat)
 
modules.py CHANGED
@@ -1,187 +1,184 @@
1
- import copy
2
  import math
3
- import numpy as np
4
- import scipy
5
  import torch
6
  from torch import nn
7
- from torch.nn import functional as F
8
-
9
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
  from torch.nn.utils import weight_norm, remove_weight_norm
11
 
12
  import commons
13
  from commons import init_weights, get_padding
14
  from transforms import piecewise_rational_quadratic_transform
15
 
16
-
17
  LRELU_SLOPE = 0.1
18
 
19
 
20
  class LayerNorm(nn.Module):
21
- def __init__(self, channels, eps=1e-5):
22
- super().__init__()
23
- self.channels = channels
24
- self.eps = eps
 
 
 
25
 
26
- self.gamma = nn.Parameter(torch.ones(channels))
27
- self.beta = nn.Parameter(torch.zeros(channels))
 
 
28
 
29
- def forward(self, x):
30
- x = x.transpose(1, -1)
31
- x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
- return x.transpose(1, -1)
33
 
34
-
35
  class ConvReluNorm(nn.Module):
36
- def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37
- super().__init__()
38
- self.in_channels = in_channels
39
- self.hidden_channels = hidden_channels
40
- self.out_channels = out_channels
41
- self.kernel_size = kernel_size
42
- self.n_layers = n_layers
43
- self.p_dropout = p_dropout
44
- assert n_layers > 1, "Number of layers should be larger than 0."
45
-
46
- self.conv_layers = nn.ModuleList()
47
- self.norm_layers = nn.ModuleList()
48
- self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49
- self.norm_layers.append(LayerNorm(hidden_channels))
50
- self.relu_drop = nn.Sequential(
51
- nn.ReLU(),
52
- nn.Dropout(p_dropout))
53
- for _ in range(n_layers-1):
54
- self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55
- self.norm_layers.append(LayerNorm(hidden_channels))
56
- self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57
- self.proj.weight.data.zero_()
58
- self.proj.bias.data.zero_()
59
-
60
- def forward(self, x, x_mask):
61
- x_org = x
62
- for i in range(self.n_layers):
63
- x = self.conv_layers[i](x * x_mask)
64
- x = self.norm_layers[i](x)
65
- x = self.relu_drop(x)
66
- x = x_org + self.proj(x)
67
- return x * x_mask
68
 
69
 
70
  class DDSConv(nn.Module):
71
- """
72
- Dialted and Depth-Separable Convolution
73
- """
74
- def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75
- super().__init__()
76
- self.channels = channels
77
- self.kernel_size = kernel_size
78
- self.n_layers = n_layers
79
- self.p_dropout = p_dropout
80
-
81
- self.drop = nn.Dropout(p_dropout)
82
- self.convs_sep = nn.ModuleList()
83
- self.convs_1x1 = nn.ModuleList()
84
- self.norms_1 = nn.ModuleList()
85
- self.norms_2 = nn.ModuleList()
86
- for i in range(n_layers):
87
- dilation = kernel_size ** i
88
- padding = (kernel_size * dilation - dilation) // 2
89
- self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90
- groups=channels, dilation=dilation, padding=padding
91
- ))
92
- self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93
- self.norms_1.append(LayerNorm(channels))
94
- self.norms_2.append(LayerNorm(channels))
95
-
96
- def forward(self, x, x_mask, g=None):
97
- if g is not None:
98
- x = x + g
99
- for i in range(self.n_layers):
100
- y = self.convs_sep[i](x * x_mask)
101
- y = self.norms_1[i](y)
102
- y = F.gelu(y)
103
- y = self.convs_1x1[i](y)
104
- y = self.norms_2[i](y)
105
- y = F.gelu(y)
106
- y = self.drop(y)
107
- x = x + y
108
- return x * x_mask
 
109
 
110
 
111
  class WN(torch.nn.Module):
112
- def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113
- super(WN, self).__init__()
114
- assert(kernel_size % 2 == 1)
115
- self.hidden_channels =hidden_channels
116
- self.kernel_size = kernel_size,
117
- self.dilation_rate = dilation_rate
118
- self.n_layers = n_layers
119
- self.gin_channels = gin_channels
120
- self.p_dropout = p_dropout
121
-
122
- self.in_layers = torch.nn.ModuleList()
123
- self.res_skip_layers = torch.nn.ModuleList()
124
- self.drop = nn.Dropout(p_dropout)
125
-
126
- if gin_channels != 0:
127
- cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128
- self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129
-
130
- for i in range(n_layers):
131
- dilation = dilation_rate ** i
132
- padding = int((kernel_size * dilation - dilation) / 2)
133
- in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134
- dilation=dilation, padding=padding)
135
- in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136
- self.in_layers.append(in_layer)
137
-
138
- # last one is not necessary
139
- if i < n_layers - 1:
140
- res_skip_channels = 2 * hidden_channels
141
- else:
142
- res_skip_channels = hidden_channels
143
-
144
- res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145
- res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146
- self.res_skip_layers.append(res_skip_layer)
147
-
148
- def forward(self, x, x_mask, g=None, **kwargs):
149
- output = torch.zeros_like(x)
150
- n_channels_tensor = torch.IntTensor([self.hidden_channels])
151
-
152
- if g is not None:
153
- g = self.cond_layer(g)
154
-
155
- for i in range(self.n_layers):
156
- x_in = self.in_layers[i](x)
157
- if g is not None:
158
- cond_offset = i * 2 * self.hidden_channels
159
- g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160
- else:
161
- g_l = torch.zeros_like(x_in)
162
-
163
- acts = commons.fused_add_tanh_sigmoid_multiply(
164
- x_in,
165
- g_l,
166
- n_channels_tensor)
167
- acts = self.drop(acts)
168
-
169
- res_skip_acts = self.res_skip_layers[i](acts)
170
- if i < self.n_layers - 1:
171
- res_acts = res_skip_acts[:,:self.hidden_channels,:]
172
- x = (x + res_acts) * x_mask
173
- output = output + res_skip_acts[:,self.hidden_channels:,:]
174
- else:
175
- output = output + res_skip_acts
176
- return output * x_mask
177
-
178
- def remove_weight_norm(self):
179
- if self.gin_channels != 0:
180
- torch.nn.utils.remove_weight_norm(self.cond_layer)
181
- for l in self.in_layers:
182
- torch.nn.utils.remove_weight_norm(l)
183
- for l in self.res_skip_layers:
184
- torch.nn.utils.remove_weight_norm(l)
185
 
186
 
187
  class ResBlock1(torch.nn.Module):
@@ -209,11 +206,11 @@ class ResBlock1(torch.nn.Module):
209
 
210
  def forward(self, x, x_mask=None):
211
  for c1, c2 in zip(self.convs1, self.convs2):
212
- xt = F.leaky_relu(x, LRELU_SLOPE)
213
  if x_mask is not None:
214
  xt = xt * x_mask
215
  xt = c1(xt)
216
- xt = F.leaky_relu(xt, LRELU_SLOPE)
217
  if x_mask is not None:
218
  xt = xt * x_mask
219
  xt = c2(xt)
@@ -242,7 +239,7 @@ class ResBlock2(torch.nn.Module):
242
 
243
  def forward(self, x, x_mask=None):
244
  for c in self.convs:
245
- xt = F.leaky_relu(x, LRELU_SLOPE)
246
  if x_mask is not None:
247
  xt = xt * x_mask
248
  xt = c(xt)
@@ -257,134 +254,135 @@ class ResBlock2(torch.nn.Module):
257
 
258
 
259
  class Log(nn.Module):
260
- def forward(self, x, x_mask, reverse=False, **kwargs):
261
- if not reverse:
262
- y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263
- logdet = torch.sum(-y, [1, 2])
264
- return y, logdet
265
- else:
266
- x = torch.exp(x) * x_mask
267
- return x
268
-
269
 
270
  class Flip(nn.Module):
271
- def forward(self, x, *args, reverse=False, **kwargs):
272
- x = torch.flip(x, [1])
273
- if not reverse:
274
- logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275
- return x, logdet
276
- else:
277
- return x
278
 
279
 
280
  class ElementwiseAffine(nn.Module):
281
- def __init__(self, channels):
282
- super().__init__()
283
- self.channels = channels
284
- self.m = nn.Parameter(torch.zeros(channels,1))
285
- self.logs = nn.Parameter(torch.zeros(channels,1))
286
-
287
- def forward(self, x, x_mask, reverse=False, **kwargs):
288
- if not reverse:
289
- y = self.m + torch.exp(self.logs) * x
290
- y = y * x_mask
291
- logdet = torch.sum(self.logs * x_mask, [1,2])
292
- return y, logdet
293
- else:
294
- x = (x - self.m) * torch.exp(-self.logs) * x_mask
295
- return x
296
 
297
 
298
  class ResidualCouplingLayer(nn.Module):
299
- def __init__(self,
300
- channels,
301
- hidden_channels,
302
- kernel_size,
303
- dilation_rate,
304
- n_layers,
305
- p_dropout=0,
306
- gin_channels=0,
307
- mean_only=False):
308
- assert channels % 2 == 0, "channels should be divisible by 2"
309
- super().__init__()
310
- self.channels = channels
311
- self.hidden_channels = hidden_channels
312
- self.kernel_size = kernel_size
313
- self.dilation_rate = dilation_rate
314
- self.n_layers = n_layers
315
- self.half_channels = channels // 2
316
- self.mean_only = mean_only
317
-
318
- self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319
- self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320
- self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321
- self.post.weight.data.zero_()
322
- self.post.bias.data.zero_()
323
-
324
- def forward(self, x, x_mask, g=None, reverse=False):
325
- x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326
- h = self.pre(x0) * x_mask
327
- h = self.enc(h, x_mask, g=g)
328
- stats = self.post(h) * x_mask
329
- if not self.mean_only:
330
- m, logs = torch.split(stats, [self.half_channels]*2, 1)
331
- else:
332
- m = stats
333
- logs = torch.zeros_like(m)
334
-
335
- if not reverse:
336
- x1 = m + x1 * torch.exp(logs) * x_mask
337
- x = torch.cat([x0, x1], 1)
338
- logdet = torch.sum(logs, [1,2])
339
- return x, logdet
340
- else:
341
- x1 = (x1 - m) * torch.exp(-logs) * x_mask
342
- x = torch.cat([x0, x1], 1)
343
- return x
 
344
 
345
 
346
  class ConvFlow(nn.Module):
347
- def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348
- super().__init__()
349
- self.in_channels = in_channels
350
- self.filter_channels = filter_channels
351
- self.kernel_size = kernel_size
352
- self.n_layers = n_layers
353
- self.num_bins = num_bins
354
- self.tail_bound = tail_bound
355
- self.half_channels = in_channels // 2
356
-
357
- self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358
- self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359
- self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360
- self.proj.weight.data.zero_()
361
- self.proj.bias.data.zero_()
362
-
363
- def forward(self, x, x_mask, g=None, reverse=False):
364
- x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365
- h = self.pre(x0)
366
- h = self.convs(h, x_mask, g=g)
367
- h = self.proj(h) * x_mask
368
-
369
- b, c, t = x0.shape
370
- h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371
-
372
- unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373
- unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374
- unnormalized_derivatives = h[..., 2 * self.num_bins:]
375
-
376
- x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377
- unnormalized_widths,
378
- unnormalized_heights,
379
- unnormalized_derivatives,
380
- inverse=reverse,
381
- tails='linear',
382
- tail_bound=self.tail_bound
383
- )
384
-
385
- x = torch.cat([x0, x1], 1) * x_mask
386
- logdet = torch.sum(logabsdet * x_mask, [1,2])
387
- if not reverse:
388
- return x, logdet
389
- else:
390
- return x
 
 
1
  import math
2
+
 
3
  import torch
4
  from torch import nn
5
+ from torch.nn import Conv1d
6
+ from torch.nn import functional as t_func
 
7
  from torch.nn.utils import weight_norm, remove_weight_norm
8
 
9
  import commons
10
  from commons import init_weights, get_padding
11
  from transforms import piecewise_rational_quadratic_transform
12
 
 
13
  LRELU_SLOPE = 0.1
14
 
15
 
16
  class LayerNorm(nn.Module):
17
+ def __init__(self, channels, eps=1e-5):
18
+ super().__init__()
19
+ self.channels = channels
20
+ self.eps = eps
21
+
22
+ self.gamma = nn.Parameter(torch.ones(channels))
23
+ self.beta = nn.Parameter(torch.zeros(channels))
24
 
25
+ def forward(self, x):
26
+ x = x.transpose(1, -1)
27
+ x = t_func.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
28
+ return x.transpose(1, -1)
29
 
 
 
 
 
30
 
 
31
  class ConvReluNorm(nn.Module):
32
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
33
+ super().__init__()
34
+ self.in_channels = in_channels
35
+ self.hidden_channels = hidden_channels
36
+ self.out_channels = out_channels
37
+ self.kernel_size = kernel_size
38
+ self.n_layers = n_layers
39
+ self.p_dropout = p_dropout
40
+ assert n_layers > 1, "Number of layers should be larger than 0."
41
+
42
+ self.conv_layers = nn.ModuleList()
43
+ self.norm_layers = nn.ModuleList()
44
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
45
+ self.norm_layers.append(LayerNorm(hidden_channels))
46
+ self.relu_drop = nn.Sequential(
47
+ nn.ReLU(),
48
+ nn.Dropout(p_dropout))
49
+ for _ in range(n_layers - 1):
50
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
51
+ self.norm_layers.append(LayerNorm(hidden_channels))
52
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
53
+ self.proj.weight.data.zero_()
54
+ self.proj.bias.data.zero_()
55
+
56
+ def forward(self, x, x_mask):
57
+ x_org = x
58
+ for i in range(self.n_layers):
59
+ x = self.conv_layers[i](x * x_mask)
60
+ x = self.norm_layers[i](x)
61
+ x = self.relu_drop(x)
62
+ x = x_org + self.proj(x)
63
+ return x * x_mask
64
 
65
 
66
  class DDSConv(nn.Module):
67
+ """
68
+ Dialted and Depth-Separable Convolution
69
+ """
70
+
71
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
72
+ super().__init__()
73
+ self.channels = channels
74
+ self.kernel_size = kernel_size
75
+ self.n_layers = n_layers
76
+ self.p_dropout = p_dropout
77
+
78
+ self.drop = nn.Dropout(p_dropout)
79
+ self.convs_sep = nn.ModuleList()
80
+ self.convs_1x1 = nn.ModuleList()
81
+ self.norms_1 = nn.ModuleList()
82
+ self.norms_2 = nn.ModuleList()
83
+ for i in range(n_layers):
84
+ dilation = kernel_size ** i
85
+ padding = (kernel_size * dilation - dilation) // 2
86
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
87
+ groups=channels, dilation=dilation, padding=padding
88
+ ))
89
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
90
+ self.norms_1.append(LayerNorm(channels))
91
+ self.norms_2.append(LayerNorm(channels))
92
+
93
+ def forward(self, x, x_mask, g=None):
94
+ if g is not None:
95
+ x = x + g
96
+ for i in range(self.n_layers):
97
+ y = self.convs_sep[i](x * x_mask)
98
+ y = self.norms_1[i](y)
99
+ y = t_func.gelu(y)
100
+ y = self.convs_1x1[i](y)
101
+ y = self.norms_2[i](y)
102
+ y = t_func.gelu(y)
103
+ y = self.drop(y)
104
+ x = x + y
105
+ return x * x_mask
106
 
107
 
108
  class WN(torch.nn.Module):
109
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
110
+ super(WN, self).__init__()
111
+ assert (kernel_size % 2 == 1)
112
+ self.hidden_channels = hidden_channels
113
+ self.kernel_size = kernel_size,
114
+ self.dilation_rate = dilation_rate
115
+ self.n_layers = n_layers
116
+ self.gin_channels = gin_channels
117
+ self.p_dropout = p_dropout
118
+
119
+ self.in_layers = torch.nn.ModuleList()
120
+ self.res_skip_layers = torch.nn.ModuleList()
121
+ self.drop = nn.Dropout(p_dropout)
122
+
123
+ if gin_channels != 0:
124
+ cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
125
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
126
+
127
+ for i in range(n_layers):
128
+ dilation = dilation_rate ** i
129
+ padding = int((kernel_size * dilation - dilation) / 2)
130
+ in_layer = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size,
131
+ dilation=dilation, padding=padding)
132
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
133
+ self.in_layers.append(in_layer)
134
+
135
+ # last one is not necessary
136
+ if i < n_layers - 1:
137
+ res_skip_channels = 2 * hidden_channels
138
+ else:
139
+ res_skip_channels = hidden_channels
140
+
141
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
142
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
143
+ self.res_skip_layers.append(res_skip_layer)
144
+
145
+ def forward(self, x, x_mask, g=None, **kwargs):
146
+ output = torch.zeros_like(x)
147
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
148
+
149
+ if g is not None:
150
+ g = self.cond_layer(g)
151
+
152
+ for i in range(self.n_layers):
153
+ x_in = self.in_layers[i](x)
154
+ if g is not None:
155
+ cond_offset = i * 2 * self.hidden_channels
156
+ g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
157
+ else:
158
+ g_l = torch.zeros_like(x_in)
159
+
160
+ acts = commons.fused_add_tanh_sigmoid_multiply(
161
+ x_in,
162
+ g_l,
163
+ n_channels_tensor)
164
+ acts = self.drop(acts)
165
+
166
+ res_skip_acts = self.res_skip_layers[i](acts)
167
+ if i < self.n_layers - 1:
168
+ res_acts = res_skip_acts[:, :self.hidden_channels, :]
169
+ x = (x + res_acts) * x_mask
170
+ output = output + res_skip_acts[:, self.hidden_channels:, :]
171
+ else:
172
+ output = output + res_skip_acts
173
+ return output * x_mask
174
+
175
+ def remove_weight_norm(self):
176
+ if self.gin_channels != 0:
177
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
178
+ for l in self.in_layers:
179
+ torch.nn.utils.remove_weight_norm(l)
180
+ for l in self.res_skip_layers:
181
+ torch.nn.utils.remove_weight_norm(l)
182
 
183
 
184
  class ResBlock1(torch.nn.Module):
 
206
 
207
  def forward(self, x, x_mask=None):
208
  for c1, c2 in zip(self.convs1, self.convs2):
209
+ xt = t_func.leaky_relu(x, LRELU_SLOPE)
210
  if x_mask is not None:
211
  xt = xt * x_mask
212
  xt = c1(xt)
213
+ xt = t_func.leaky_relu(xt, LRELU_SLOPE)
214
  if x_mask is not None:
215
  xt = xt * x_mask
216
  xt = c2(xt)
 
239
 
240
  def forward(self, x, x_mask=None):
241
  for c in self.convs:
242
+ xt = t_func.leaky_relu(x, LRELU_SLOPE)
243
  if x_mask is not None:
244
  xt = xt * x_mask
245
  xt = c(xt)
 
254
 
255
 
256
  class Log(nn.Module):
257
+ def forward(self, x, x_mask, reverse=False, **kwargs):
258
+ if not reverse:
259
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
260
+ logdet = torch.sum(-y, [1, 2])
261
+ return y, logdet
262
+ else:
263
+ x = torch.exp(x) * x_mask
264
+ return x
265
+
266
 
267
  class Flip(nn.Module):
268
+ def forward(self, x, *args, reverse=False, **kwargs):
269
+ x = torch.flip(x, [1])
270
+ if not reverse:
271
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
272
+ return x, logdet
273
+ else:
274
+ return x
275
 
276
 
277
  class ElementwiseAffine(nn.Module):
278
+ def __init__(self, channels):
279
+ super().__init__()
280
+ self.channels = channels
281
+ self.m = nn.Parameter(torch.zeros(channels, 1))
282
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
283
+
284
+ def forward(self, x, x_mask, reverse=False, **kwargs):
285
+ if not reverse:
286
+ y = self.m + torch.exp(self.logs) * x
287
+ y = y * x_mask
288
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
289
+ return y, logdet
290
+ else:
291
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
292
+ return x
293
 
294
 
295
  class ResidualCouplingLayer(nn.Module):
296
+ def __init__(self,
297
+ channels,
298
+ hidden_channels,
299
+ kernel_size,
300
+ dilation_rate,
301
+ n_layers,
302
+ p_dropout=0,
303
+ gin_channels=0,
304
+ mean_only=False):
305
+ assert channels % 2 == 0, "channels should be divisible by 2"
306
+ super().__init__()
307
+ self.channels = channels
308
+ self.hidden_channels = hidden_channels
309
+ self.kernel_size = kernel_size
310
+ self.dilation_rate = dilation_rate
311
+ self.n_layers = n_layers
312
+ self.half_channels = channels // 2
313
+ self.mean_only = mean_only
314
+
315
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
316
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout,
317
+ gin_channels=gin_channels)
318
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
319
+ self.post.weight.data.zero_()
320
+ self.post.bias.data.zero_()
321
+
322
+ def forward(self, x, x_mask, g=None, reverse=False):
323
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
324
+ h = self.pre(x0) * x_mask
325
+ h = self.enc(h, x_mask, g=g)
326
+ stats = self.post(h) * x_mask
327
+ if not self.mean_only:
328
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
329
+ else:
330
+ m = stats
331
+ logs = torch.zeros_like(m)
332
+
333
+ if not reverse:
334
+ x1 = m + x1 * torch.exp(logs) * x_mask
335
+ x = torch.cat([x0, x1], 1)
336
+ logdet = torch.sum(logs, [1, 2])
337
+ return x, logdet
338
+ else:
339
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
340
+ x = torch.cat([x0, x1], 1)
341
+ return x
342
 
343
 
344
  class ConvFlow(nn.Module):
345
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
346
+ super().__init__()
347
+ self.in_channels = in_channels
348
+ self.filter_channels = filter_channels
349
+ self.kernel_size = kernel_size
350
+ self.n_layers = n_layers
351
+ self.num_bins = num_bins
352
+ self.tail_bound = tail_bound
353
+ self.half_channels = in_channels // 2
354
+
355
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
356
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
357
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
358
+ self.proj.weight.data.zero_()
359
+ self.proj.bias.data.zero_()
360
+
361
+ def forward(self, x, x_mask, g=None, reverse=False):
362
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
363
+ h = self.pre(x0)
364
+ h = self.convs(h, x_mask, g=g)
365
+ h = self.proj(h) * x_mask
366
+
367
+ b, c, t = x0.shape
368
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
369
+
370
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
371
+ unnormalized_heights = h[..., self.num_bins:2 * self.num_bins] / math.sqrt(self.filter_channels)
372
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
373
+
374
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
375
+ unnormalized_widths,
376
+ unnormalized_heights,
377
+ unnormalized_derivatives,
378
+ inverse=reverse,
379
+ tails='linear',
380
+ tail_bound=self.tail_bound
381
+ )
382
+
383
+ x = torch.cat([x0, x1], 1) * x_mask
384
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
385
+ if not reverse:
386
+ return x, logdet
387
+ else:
388
+ return x
monotonic_align/__init__.py DELETED
@@ -1,19 +0,0 @@
1
- import numpy as np
2
- import torch
3
- from .monotonic_align.core import maximum_path_c
4
-
5
-
6
- def maximum_path(neg_cent, mask):
7
- """ Cython optimized version.
8
- neg_cent: [b, t_t, t_s]
9
- mask: [b, t_t, t_s]
10
- """
11
- device = neg_cent.device
12
- dtype = neg_cent.dtype
13
- neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
14
- path = np.zeros(neg_cent.shape, dtype=np.int32)
15
-
16
- t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
17
- t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
18
- maximum_path_c(path, neg_cent, t_t_max, t_s_max)
19
- return torch.from_numpy(path).to(device=device, dtype=dtype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
monotonic_align/core.pyx DELETED
@@ -1,42 +0,0 @@
1
- cimport cython
2
- from cython.parallel import prange
3
-
4
-
5
- @cython.boundscheck(False)
6
- @cython.wraparound(False)
7
- cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
8
- cdef int x
9
- cdef int y
10
- cdef float v_prev
11
- cdef float v_cur
12
- cdef float tmp
13
- cdef int index = t_x - 1
14
-
15
- for y in range(t_y):
16
- for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
17
- if x == y:
18
- v_cur = max_neg_val
19
- else:
20
- v_cur = value[y-1, x]
21
- if x == 0:
22
- if y == 0:
23
- v_prev = 0.
24
- else:
25
- v_prev = max_neg_val
26
- else:
27
- v_prev = value[y-1, x-1]
28
- value[y, x] += max(v_prev, v_cur)
29
-
30
- for y in range(t_y - 1, -1, -1):
31
- path[y, index] = 1
32
- if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
33
- index = index - 1
34
-
35
-
36
- @cython.boundscheck(False)
37
- @cython.wraparound(False)
38
- cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
39
- cdef int b = paths.shape[0]
40
- cdef int i
41
- for i in prange(b, nogil=True):
42
- maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
monotonic_align/setup.py DELETED
@@ -1,9 +0,0 @@
1
- from distutils.core import setup
2
- from Cython.Build import cythonize
3
- import numpy
4
-
5
- setup(
6
- name = 'monotonic_align',
7
- ext_modules = cythonize("core.pyx"),
8
- include_dirs=[numpy.get_include()]
9
- )
 
 
 
 
 
 
 
 
 
 
preprocess.py DELETED
@@ -1,25 +0,0 @@
1
- import argparse
2
- import text
3
- from utils import load_filepaths_and_text
4
-
5
- if __name__ == '__main__':
6
- parser = argparse.ArgumentParser()
7
- parser.add_argument("--out_extension", default="cleaned")
8
- parser.add_argument("--text_index", default=1, type=int)
9
- parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
10
- parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
11
-
12
- args = parser.parse_args()
13
-
14
-
15
- for filelist in args.filelists:
16
- print("START:", filelist)
17
- filepaths_and_text = load_filepaths_and_text(filelist)
18
- for i in range(len(filepaths_and_text)):
19
- original_text = filepaths_and_text[i][args.text_index]
20
- cleaned_text = text._clean_text(original_text, args.text_cleaners)
21
- filepaths_and_text[i][args.text_index] = cleaned_text
22
-
23
- new_filelist = filelist + "." + args.out_extension
24
- with open(new_filelist, "w", encoding="utf-8") as f:
25
- f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess_wave.py CHANGED
@@ -1,10 +1,12 @@
1
  import os
 
2
  import librosa
3
- import pyworld
4
- import utils
5
  import numpy as np
 
6
  from scipy.io import wavfile
7
 
 
 
8
 
9
  class FeatureInput(object):
10
  def __init__(self, samplerate=16000, hop_size=160):
@@ -35,7 +37,7 @@ class FeatureInput(object):
35
  def coarse_f0(self, f0):
36
  f0_mel = 1127 * np.log(1 + f0 / 700)
37
  f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
38
- self.f0_bin - 2
39
  ) / (self.f0_mel_max - self.f0_mel_min) + 1
40
 
41
  # use 0 or 1
@@ -52,7 +54,7 @@ class FeatureInput(object):
52
  def coarse_f0_ts(self, f0):
53
  f0_mel = 1127 * (1 + f0 / 700).log()
54
  f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
55
- self.f0_bin - 2
56
  ) / (self.f0_mel_max - self.f0_mel_min) + 1
57
 
58
  # use 0 or 1
 
1
  import os
2
+
3
  import librosa
 
 
4
  import numpy as np
5
+ import pyworld
6
  from scipy.io import wavfile
7
 
8
+ import utils
9
+
10
 
11
  class FeatureInput(object):
12
  def __init__(self, samplerate=16000, hop_size=160):
 
37
  def coarse_f0(self, f0):
38
  f0_mel = 1127 * np.log(1 + f0 / 700)
39
  f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
40
+ self.f0_bin - 2
41
  ) / (self.f0_mel_max - self.f0_mel_min) + 1
42
 
43
  # use 0 or 1
 
54
  def coarse_f0_ts(self, f0):
55
  f0_mel = 1127 * (1 + f0 / 700).log()
56
  f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
57
+ self.f0_bin - 2
58
  ) / (self.f0_mel_max - self.f0_mel_min) + 1
59
 
60
  # use 0 or 1
requirements.txt CHANGED
@@ -4,9 +4,13 @@ matplotlib==3.3.1
4
  numpy==1.18.5
5
  phonemizer==2.2.1
6
  scipy==1.5.2
7
- tensorboard==2.3.0
8
  torch
9
  torchvision
10
  Unidecode==1.1.1
11
  torchaudio
12
  pyworld
 
 
 
 
 
 
4
  numpy==1.18.5
5
  phonemizer==2.2.1
6
  scipy==1.5.2
 
7
  torch
8
  torchvision
9
  Unidecode==1.1.1
10
  torchaudio
11
  pyworld
12
+ scipy
13
+ keras
14
+ mir-eval
15
+ pretty-midi
16
+ pydub
slicer.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os.path
2
+ import time
3
+ from argparse import ArgumentParser
4
+
5
+ import librosa
6
+ import numpy as np
7
+ import soundfile
8
+ from scipy.ndimage import maximum_filter1d, uniform_filter1d
9
+
10
+
11
+ def timeit(func):
12
+ def run(*args, **kwargs):
13
+ t = time.time()
14
+ res = func(*args, **kwargs)
15
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
16
+ return res
17
+
18
+ return run
19
+
20
+
21
+ # @timeit
22
+ def _window_maximum(arr, win_sz):
23
+ return maximum_filter1d(arr, size=win_sz)[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
24
+
25
+
26
+ # @timeit
27
+ def _window_rms(arr, win_sz):
28
+ filtered = np.sqrt(uniform_filter1d(np.power(arr, 2), win_sz) - np.power(uniform_filter1d(arr, win_sz), 2))
29
+ return filtered[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
30
+
31
+
32
+ def level2db(levels, eps=1e-12):
33
+ return 20 * np.log10(np.clip(levels, a_min=eps, a_max=1))
34
+
35
+
36
+ def _apply_slice(audio, begin, end):
37
+ if len(audio.shape) > 1:
38
+ return audio[:, begin: end]
39
+ else:
40
+ return audio[begin: end]
41
+
42
+
43
+ class Slicer:
44
+ def __init__(self,
45
+ sr: int,
46
+ db_threshold: float = -40,
47
+ min_length: int = 5000,
48
+ win_l: int = 300,
49
+ win_s: int = 20,
50
+ max_silence_kept: int = 500):
51
+ self.db_threshold = db_threshold
52
+ self.min_samples = round(sr * min_length / 1000)
53
+ self.win_ln = round(sr * win_l / 1000)
54
+ self.win_sn = round(sr * win_s / 1000)
55
+ self.max_silence = round(sr * max_silence_kept / 1000)
56
+ if not self.min_samples >= self.win_ln >= self.win_sn:
57
+ raise ValueError('The following condition must be satisfied: min_length >= win_l >= win_s')
58
+ if not self.max_silence >= self.win_sn:
59
+ raise ValueError('The following condition must be satisfied: max_silence_kept >= win_s')
60
+
61
+ @timeit
62
+ def slice(self, audio):
63
+ if len(audio.shape) > 1:
64
+ samples = librosa.to_mono(audio)
65
+ else:
66
+ samples = audio
67
+ if samples.shape[0] <= self.min_samples:
68
+ return [audio]
69
+ # get absolute amplitudes
70
+ abs_amp = np.abs(samples - np.mean(samples))
71
+ # calculate local maximum with large window
72
+ win_max_db = level2db(_window_maximum(abs_amp, win_sz=self.win_ln))
73
+ sil_tags = []
74
+ left = right = 0
75
+ while right < win_max_db.shape[0]:
76
+ if win_max_db[right] < self.db_threshold:
77
+ right += 1
78
+ elif left == right:
79
+ left += 1
80
+ right += 1
81
+ else:
82
+ if left == 0:
83
+ split_loc_l = left
84
+ else:
85
+ sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
86
+ rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
87
+ split_win_l = left + np.argmin(rms_db_left)
88
+ split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
89
+ if len(sil_tags) != 0 and split_loc_l - sil_tags[-1][1] < self.min_samples and right < win_max_db.shape[
90
+ 0] - 1:
91
+ right += 1
92
+ left = right
93
+ continue
94
+ if right == win_max_db.shape[0] - 1:
95
+ split_loc_r = right + self.win_ln
96
+ else:
97
+ sil_right_n = min(self.max_silence, (right + self.win_ln - left) // 2)
98
+ rms_db_right = level2db(_window_rms(samples[right + self.win_ln - sil_right_n: right + self.win_ln],
99
+ win_sz=self.win_sn))
100
+ split_win_r = right + self.win_ln - sil_right_n + np.argmin(rms_db_right)
101
+ split_loc_r = split_win_r + np.argmin(abs_amp[split_win_r: split_win_r + self.win_sn])
102
+ sil_tags.append((split_loc_l, split_loc_r))
103
+ right += 1
104
+ left = right
105
+ if left != right:
106
+ sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
107
+ rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
108
+ split_win_l = left + np.argmin(rms_db_left)
109
+ split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
110
+ sil_tags.append((split_loc_l, samples.shape[0]))
111
+ if len(sil_tags) == 0:
112
+ return [audio]
113
+ else:
114
+ chunks = []
115
+ for i in range(0, len(sil_tags)):
116
+ chunks.append(int((sil_tags[i][0] + sil_tags[i][1]) / 2))
117
+ return chunks
118
+
119
+
120
+ def main():
121
+ parser = ArgumentParser()
122
+ parser.add_argument('audio', type=str, help='The audio to be sliced')
123
+ parser.add_argument('--out_name', type=str, help='Output directory of the sliced audio clips')
124
+ parser.add_argument('--out', type=str, help='Output directory of the sliced audio clips')
125
+ parser.add_argument('--db_thresh', type=float, required=False, default=-40,
126
+ help='The dB threshold for silence detection')
127
+ parser.add_argument('--min_len', type=int, required=False, default=5000,
128
+ help='The minimum milliseconds required for each sliced audio clip')
129
+ parser.add_argument('--win_l', type=int, required=False, default=300,
130
+ help='Size of the large sliding window, presented in milliseconds')
131
+ parser.add_argument('--win_s', type=int, required=False, default=20,
132
+ help='Size of the small sliding window, presented in milliseconds')
133
+ parser.add_argument('--max_sil_kept', type=int, required=False, default=500,
134
+ help='The maximum silence length kept around the sliced audio, presented in milliseconds')
135
+ args = parser.parse_args()
136
+ out = args.out
137
+ if out is None:
138
+ out = os.path.dirname(os.path.abspath(args.audio))
139
+ audio, sr = librosa.load(args.audio, sr=None)
140
+ slicer = Slicer(
141
+ sr=sr,
142
+ db_threshold=args.db_thresh,
143
+ min_length=args.min_len,
144
+ win_l=args.win_l,
145
+ win_s=args.win_s,
146
+ max_silence_kept=args.max_sil_kept
147
+ )
148
+ chunks = slicer.slice(audio)
149
+ if not os.path.exists(args.out):
150
+ os.makedirs(args.out)
151
+ start = 0
152
+ end_id = 0
153
+ for i, chunk in enumerate(chunks):
154
+ end = chunk
155
+ soundfile.write(os.path.join(out, f'%s-%s.wav' % (args.out_name, str(i).zfill(2))), audio[start:end], sr)
156
+ start = end
157
+ end_id = i + 1
158
+ soundfile.write(os.path.join(out, f'%s-%s.wav' % (args.out_name, str(end_id).zfill(2))), audio[start:len(audio)],
159
+ sr)
160
+
161
+
162
+ if __name__ == '__main__':
163
+ main()
text/LICENSE DELETED
@@ -1,19 +0,0 @@
1
- Copyright (c) 2017 Keith Ito
2
-
3
- Permission is hereby granted, free of charge, to any person obtaining a copy
4
- of this software and associated documentation files (the "Software"), to deal
5
- in the Software without restriction, including without limitation the rights
6
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7
- copies of the Software, and to permit persons to whom the Software is
8
- furnished to do so, subject to the following conditions:
9
-
10
- The above copyright notice and this permission notice shall be included in
11
- all copies or substantial portions of the Software.
12
-
13
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19
- THE SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
text/__init__.py DELETED
@@ -1,54 +0,0 @@
1
- """ from https://github.com/keithito/tacotron """
2
- from text import cleaners
3
- from text.symbols import symbols
4
-
5
-
6
- # Mappings from symbol to numeric ID and vice versa:
7
- _symbol_to_id = {s: i for i, s in enumerate(symbols)}
8
- _id_to_symbol = {i: s for i, s in enumerate(symbols)}
9
-
10
-
11
- def text_to_sequence(text, cleaner_names):
12
- '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
13
- Args:
14
- text: string to convert to a sequence
15
- cleaner_names: names of the cleaner functions to run the text through
16
- Returns:
17
- List of integers corresponding to the symbols in the text
18
- '''
19
- sequence = []
20
-
21
- clean_text = _clean_text(text, cleaner_names)
22
- for symbol in clean_text:
23
- symbol_id = _symbol_to_id[symbol]
24
- sequence += [symbol_id]
25
- return sequence
26
-
27
-
28
- def cleaned_text_to_sequence(cleaned_text):
29
- '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
30
- Args:
31
- text: string to convert to a sequence
32
- Returns:
33
- List of integers corresponding to the symbols in the text
34
- '''
35
- sequence = [_symbol_to_id[symbol] for symbol in cleaned_text]
36
- return sequence
37
-
38
-
39
- def sequence_to_text(sequence):
40
- '''Converts a sequence of IDs back to a string'''
41
- result = ''
42
- for symbol_id in sequence:
43
- s = _id_to_symbol[symbol_id]
44
- result += s
45
- return result
46
-
47
-
48
- def _clean_text(text, cleaner_names):
49
- for name in cleaner_names:
50
- cleaner = getattr(cleaners, name)
51
- if not cleaner:
52
- raise Exception('Unknown cleaner: %s' % name)
53
- text = cleaner(text)
54
- return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
text/cleaners.py DELETED
@@ -1,100 +0,0 @@
1
- """ from https://github.com/keithito/tacotron """
2
-
3
- '''
4
- Cleaners are transformations that run over the input text at both training and eval time.
5
-
6
- Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7
- hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8
- 1. "english_cleaners" for English text
9
- 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10
- the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11
- 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12
- the symbols in symbols.py to match your data).
13
- '''
14
-
15
- import re
16
- from unidecode import unidecode
17
- from phonemizer import phonemize
18
-
19
-
20
- # Regular expression matching whitespace:
21
- _whitespace_re = re.compile(r'\s+')
22
-
23
- # List of (regular expression, replacement) pairs for abbreviations:
24
- _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
25
- ('mrs', 'misess'),
26
- ('mr', 'mister'),
27
- ('dr', 'doctor'),
28
- ('st', 'saint'),
29
- ('co', 'company'),
30
- ('jr', 'junior'),
31
- ('maj', 'major'),
32
- ('gen', 'general'),
33
- ('drs', 'doctors'),
34
- ('rev', 'reverend'),
35
- ('lt', 'lieutenant'),
36
- ('hon', 'honorable'),
37
- ('sgt', 'sergeant'),
38
- ('capt', 'captain'),
39
- ('esq', 'esquire'),
40
- ('ltd', 'limited'),
41
- ('col', 'colonel'),
42
- ('ft', 'fort'),
43
- ]]
44
-
45
-
46
- def expand_abbreviations(text):
47
- for regex, replacement in _abbreviations:
48
- text = re.sub(regex, replacement, text)
49
- return text
50
-
51
-
52
- def expand_numbers(text):
53
- return normalize_numbers(text)
54
-
55
-
56
- def lowercase(text):
57
- return text.lower()
58
-
59
-
60
- def collapse_whitespace(text):
61
- return re.sub(_whitespace_re, ' ', text)
62
-
63
-
64
- def convert_to_ascii(text):
65
- return unidecode(text)
66
-
67
-
68
- def basic_cleaners(text):
69
- '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
70
- text = lowercase(text)
71
- text = collapse_whitespace(text)
72
- return text
73
-
74
-
75
- def transliteration_cleaners(text):
76
- '''Pipeline for non-English text that transliterates to ASCII.'''
77
- text = convert_to_ascii(text)
78
- text = lowercase(text)
79
- text = collapse_whitespace(text)
80
- return text
81
-
82
-
83
- def english_cleaners(text):
84
- '''Pipeline for English text, including abbreviation expansion.'''
85
- text = convert_to_ascii(text)
86
- text = lowercase(text)
87
- text = expand_abbreviations(text)
88
- phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
89
- phonemes = collapse_whitespace(phonemes)
90
- return phonemes
91
-
92
-
93
- def english_cleaners2(text):
94
- '''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''
95
- text = convert_to_ascii(text)
96
- text = lowercase(text)
97
- text = expand_abbreviations(text)
98
- phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
99
- phonemes = collapse_whitespace(phonemes)
100
- return phonemes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
text/symbols.py DELETED
@@ -1,16 +0,0 @@
1
- """ from https://github.com/keithito/tacotron """
2
-
3
- '''
4
- Defines the set of symbols used in text input to the model.
5
- '''
6
- _pad = '_'
7
- _punctuation = ';:,.!?¡¿—…"«»“” '
8
- _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
9
- _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
10
-
11
-
12
- # Export all symbols:
13
- symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
14
-
15
- # Special symbol ids
16
- SPACE_ID = symbols.index(" ")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train.py DELETED
@@ -1,295 +0,0 @@
1
- import os
2
- import json
3
- import argparse
4
- import itertools
5
- import math
6
- import torch
7
- from torch import nn, optim
8
- from torch.nn import functional as F
9
- from torch.utils.data import DataLoader
10
- from torch.utils.tensorboard import SummaryWriter
11
- import torch.multiprocessing as mp
12
- import torch.distributed as dist
13
- from torch.nn.parallel import DistributedDataParallel as DDP
14
- from torch.cuda.amp import autocast, GradScaler
15
-
16
- import librosa
17
- import logging
18
-
19
- logging.getLogger('numba').setLevel(logging.WARNING)
20
-
21
- import commons
22
- import utils
23
- from data_utils import (
24
- TextAudioLoader,
25
- TextAudioCollate,
26
- DistributedBucketSampler
27
- )
28
- from models import (
29
- SynthesizerTrn,
30
- MultiPeriodDiscriminator,
31
- )
32
- from losses import (
33
- generator_loss,
34
- discriminator_loss,
35
- feature_loss,
36
- kl_loss
37
- )
38
- from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
39
- from text.symbols import symbols
40
-
41
-
42
- torch.backends.cudnn.benchmark = True
43
- global_step = 0
44
-
45
-
46
- def main():
47
- """Assume Single Node Multi GPUs Training Only"""
48
- assert torch.cuda.is_available(), "CPU training is not allowed."
49
-
50
- n_gpus = torch.cuda.device_count()
51
- os.environ['MASTER_ADDR'] = 'localhost'
52
- os.environ['MASTER_PORT'] = '25565'
53
-
54
- hps = utils.get_hparams()
55
- mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
56
-
57
-
58
- def run(rank, n_gpus, hps):
59
- global global_step
60
- if rank == 0:
61
- logger = utils.get_logger(hps.model_dir)
62
- logger.info(hps)
63
- utils.check_git_hash(hps.model_dir)
64
- writer = SummaryWriter(log_dir=hps.model_dir)
65
- writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
66
-
67
- dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
68
- torch.manual_seed(hps.train.seed)
69
- torch.cuda.set_device(rank)
70
-
71
- train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
72
- train_sampler = DistributedBucketSampler(
73
- train_dataset,
74
- hps.train.batch_size,
75
- [32,300,400,500,600,700,800,900,1000],
76
- num_replicas=n_gpus,
77
- rank=rank,
78
- shuffle=True)
79
- collate_fn = TextAudioCollate()
80
- train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
81
- collate_fn=collate_fn, batch_sampler=train_sampler)
82
- if rank == 0:
83
- eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
84
- eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
85
- batch_size=hps.train.batch_size, pin_memory=True,
86
- drop_last=False, collate_fn=collate_fn)
87
-
88
- net_g = SynthesizerTrn(
89
- len(symbols),
90
- hps.data.filter_length // 2 + 1,
91
- hps.train.segment_size // hps.data.hop_length,
92
- **hps.model).cuda(rank)
93
- net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
94
- optim_g = torch.optim.AdamW(
95
- net_g.parameters(),
96
- hps.train.learning_rate,
97
- betas=hps.train.betas,
98
- eps=hps.train.eps)
99
- optim_d = torch.optim.AdamW(
100
- net_d.parameters(),
101
- hps.train.learning_rate,
102
- betas=hps.train.betas,
103
- eps=hps.train.eps)
104
- net_g = DDP(net_g, device_ids=[rank])
105
- net_d = DDP(net_d, device_ids=[rank])
106
-
107
- try:
108
- _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
109
- _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
110
- global_step = (epoch_str - 1) * len(train_loader)
111
- except:
112
- epoch_str = 1
113
- global_step = 0
114
-
115
- scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
116
- scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
117
-
118
- scaler = GradScaler(enabled=hps.train.fp16_run)
119
-
120
- for epoch in range(epoch_str, hps.train.epochs + 1):
121
- if rank==0:
122
- train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
123
- else:
124
- train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
125
- scheduler_g.step()
126
- scheduler_d.step()
127
-
128
-
129
- def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
130
- net_g, net_d = nets
131
- optim_g, optim_d = optims
132
- scheduler_g, scheduler_d = schedulers
133
- train_loader, eval_loader = loaders
134
- if writers is not None:
135
- writer, writer_eval = writers
136
-
137
- train_loader.batch_sampler.set_epoch(epoch)
138
- global global_step
139
-
140
- net_g.train()
141
- net_d.train()
142
- for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch) in enumerate(train_loader):
143
- x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
144
- spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
145
- y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
146
- pitch = pitch.cuda(rank, non_blocking=True)
147
- with autocast(enabled=hps.train.fp16_run):
148
- y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
149
- (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, pitch)
150
-
151
- mel = spec_to_mel_torch(
152
- spec,
153
- hps.data.filter_length,
154
- hps.data.n_mel_channels,
155
- hps.data.sampling_rate,
156
- hps.data.mel_fmin,
157
- hps.data.mel_fmax)
158
- y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
159
- y_hat_mel = mel_spectrogram_torch(
160
- y_hat.squeeze(1),
161
- hps.data.filter_length,
162
- hps.data.n_mel_channels,
163
- hps.data.sampling_rate,
164
- hps.data.hop_length,
165
- hps.data.win_length,
166
- hps.data.mel_fmin,
167
- hps.data.mel_fmax
168
- )
169
-
170
- y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
171
-
172
- # Discriminator
173
- y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
174
- with autocast(enabled=False):
175
- loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
176
- loss_disc_all = loss_disc
177
- optim_d.zero_grad()
178
- scaler.scale(loss_disc_all).backward()
179
- scaler.unscale_(optim_d)
180
- grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
181
- scaler.step(optim_d)
182
-
183
- with autocast(enabled=hps.train.fp16_run):
184
- # Generator
185
- y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
186
- with autocast(enabled=False):
187
- loss_dur = torch.sum(l_length.float())
188
- loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
189
- loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
190
-
191
- loss_fm = feature_loss(fmap_r, fmap_g)
192
- loss_gen, losses_gen = generator_loss(y_d_hat_g)
193
- loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
194
- optim_g.zero_grad()
195
- scaler.scale(loss_gen_all).backward()
196
- scaler.unscale_(optim_g)
197
- grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
198
- scaler.step(optim_g)
199
- scaler.update()
200
-
201
- if rank==0:
202
- if global_step % hps.train.log_interval == 0:
203
- lr = optim_g.param_groups[0]['lr']
204
- losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
205
- logger.info('Train Epoch: {} [{:.0f}%]'.format(
206
- epoch,
207
- 100. * batch_idx / len(train_loader)))
208
- logger.info([x.item() for x in losses] + [global_step, lr])
209
-
210
- scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
211
- scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
212
-
213
- scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
214
- scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
215
- scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
216
- image_dict = {
217
- "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
218
- "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
219
- "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
220
- "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
221
- }
222
- utils.summarize(
223
- writer=writer,
224
- global_step=global_step,
225
- images=image_dict,
226
- scalars=scalar_dict)
227
-
228
- if global_step % hps.train.eval_interval == 0:
229
- evaluate(hps, net_g, eval_loader, writer_eval)
230
- utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
231
- utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
232
- global_step += 1
233
-
234
- if rank == 0:
235
- logger.info('====> Epoch: {}'.format(epoch))
236
-
237
-
238
- def evaluate(hps, generator, eval_loader, writer_eval):
239
- generator.eval()
240
- with torch.no_grad():
241
- for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch) in enumerate(eval_loader):
242
- x, x_lengths = x.cuda(0), x_lengths.cuda(0)
243
- spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
244
- y, y_lengths = y.cuda(0), y_lengths.cuda(0)
245
- pitch = pitch.cuda(0)
246
- # remove else
247
- x = x[:1]
248
- x_lengths = x_lengths[:1]
249
- spec = spec[:1]
250
- spec_lengths = spec_lengths[:1]
251
- y = y[:1]
252
- y_lengths = y_lengths[:1]
253
- break
254
- y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, pitch, max_len=1000)
255
- y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
256
-
257
- mel = spec_to_mel_torch(
258
- spec,
259
- hps.data.filter_length,
260
- hps.data.n_mel_channels,
261
- hps.data.sampling_rate,
262
- hps.data.mel_fmin,
263
- hps.data.mel_fmax)
264
- y_hat_mel = mel_spectrogram_torch(
265
- y_hat.squeeze(1).float(),
266
- hps.data.filter_length,
267
- hps.data.n_mel_channels,
268
- hps.data.sampling_rate,
269
- hps.data.hop_length,
270
- hps.data.win_length,
271
- hps.data.mel_fmin,
272
- hps.data.mel_fmax
273
- )
274
- image_dict = {
275
- "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
276
- }
277
- audio_dict = {
278
- "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
279
- }
280
- if global_step == 0:
281
- image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
282
- audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
283
-
284
- utils.summarize(
285
- writer=writer_eval,
286
- global_step=global_step,
287
- images=image_dict,
288
- audios=audio_dict,
289
- audio_sampling_rate=hps.data.sampling_rate
290
- )
291
- generator.train()
292
-
293
-
294
- if __name__ == "__main__":
295
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train_ms.py DELETED
@@ -1,296 +0,0 @@
1
- import os
2
- import json
3
- import argparse
4
- import itertools
5
- import math
6
- import torch
7
- from torch import nn, optim
8
- from torch.nn import functional as F
9
- from torch.utils.data import DataLoader
10
- from torch.utils.tensorboard import SummaryWriter
11
- import torch.multiprocessing as mp
12
- import torch.distributed as dist
13
- from torch.nn.parallel import DistributedDataParallel as DDP
14
- from torch.cuda.amp import autocast, GradScaler
15
-
16
- import commons
17
- import utils
18
- from data_utils import (
19
- TextAudioSpeakerLoader,
20
- TextAudioSpeakerCollate,
21
- DistributedBucketSampler
22
- )
23
- from models import (
24
- SynthesizerTrn,
25
- MultiPeriodDiscriminator,
26
- )
27
- from losses import (
28
- generator_loss,
29
- discriminator_loss,
30
- feature_loss,
31
- kl_loss
32
- )
33
- from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34
- from text.symbols import symbols
35
-
36
-
37
- torch.backends.cudnn.benchmark = True
38
- global_step = 0
39
-
40
-
41
- def main():
42
- """Assume Single Node Multi GPUs Training Only"""
43
- assert torch.cuda.is_available(), "CPU training is not allowed."
44
-
45
- n_gpus = torch.cuda.device_count()
46
- os.environ['MASTER_ADDR'] = 'localhost'
47
- os.environ['MASTER_PORT'] = '25565'
48
-
49
- hps = utils.get_hparams()
50
- mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
51
-
52
-
53
- def run(rank, n_gpus, hps):
54
- global global_step
55
- if rank == 0:
56
- logger = utils.get_logger(hps.model_dir)
57
- logger.info(hps)
58
- utils.check_git_hash(hps.model_dir)
59
- writer = SummaryWriter(log_dir=hps.model_dir)
60
- writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
61
-
62
- dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
63
- torch.manual_seed(hps.train.seed)
64
- torch.cuda.set_device(rank)
65
-
66
- train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
67
- train_sampler = DistributedBucketSampler(
68
- train_dataset,
69
- hps.train.batch_size,
70
- [32,300,400,500,600,700,800,900,1000],
71
- num_replicas=n_gpus,
72
- rank=rank,
73
- shuffle=True)
74
- collate_fn = TextAudioSpeakerCollate()
75
- train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
76
- collate_fn=collate_fn, batch_sampler=train_sampler)
77
- if rank == 0:
78
- eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
79
- eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
80
- batch_size=hps.train.batch_size, pin_memory=True,
81
- drop_last=False, collate_fn=collate_fn)
82
-
83
- net_g = SynthesizerTrn(
84
- len(symbols),
85
- hps.data.filter_length // 2 + 1,
86
- hps.train.segment_size // hps.data.hop_length,
87
- n_speakers=hps.data.n_speakers,
88
- **hps.model).cuda(rank)
89
- net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
90
- optim_g = torch.optim.AdamW(
91
- net_g.parameters(),
92
- hps.train.learning_rate,
93
- betas=hps.train.betas,
94
- eps=hps.train.eps)
95
- optim_d = torch.optim.AdamW(
96
- net_d.parameters(),
97
- hps.train.learning_rate,
98
- betas=hps.train.betas,
99
- eps=hps.train.eps)
100
- net_g = DDP(net_g, device_ids=[rank])
101
- net_d = DDP(net_d, device_ids=[rank])
102
-
103
- try:
104
- _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
105
- _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
106
- global_step = (epoch_str - 1) * len(train_loader)
107
- except:
108
- epoch_str = 1
109
- global_step = 0
110
-
111
- scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112
- scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
113
-
114
- scaler = GradScaler(enabled=hps.train.fp16_run)
115
-
116
- for epoch in range(epoch_str, hps.train.epochs + 1):
117
- if rank==0:
118
- train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
119
- else:
120
- train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
121
- scheduler_g.step()
122
- scheduler_d.step()
123
-
124
-
125
- def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
126
- net_g, net_d = nets
127
- optim_g, optim_d = optims
128
- scheduler_g, scheduler_d = schedulers
129
- train_loader, eval_loader = loaders
130
- if writers is not None:
131
- writer, writer_eval = writers
132
-
133
- train_loader.batch_sampler.set_epoch(epoch)
134
- global global_step
135
-
136
- net_g.train()
137
- net_d.train()
138
- for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch, speakers) in enumerate(train_loader):
139
- x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
140
- spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
141
- y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
142
- speakers = speakers.cuda(rank, non_blocking=True)
143
- pitch = pitch.cuda(rank, non_blocking=True)
144
-
145
- with autocast(enabled=hps.train.fp16_run):
146
- y_hat, l_length, l_pitch, attn, ids_slice, x_mask, z_mask,\
147
- (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, pitch, speakers)
148
-
149
- mel = spec_to_mel_torch(
150
- spec,
151
- hps.data.filter_length,
152
- hps.data.n_mel_channels,
153
- hps.data.sampling_rate,
154
- hps.data.mel_fmin,
155
- hps.data.mel_fmax)
156
- y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
157
- y_hat_mel = mel_spectrogram_torch(
158
- y_hat.squeeze(1),
159
- hps.data.filter_length,
160
- hps.data.n_mel_channels,
161
- hps.data.sampling_rate,
162
- hps.data.hop_length,
163
- hps.data.win_length,
164
- hps.data.mel_fmin,
165
- hps.data.mel_fmax
166
- )
167
-
168
- y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
169
-
170
- # Discriminator
171
- y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
172
- with autocast(enabled=False):
173
- loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
174
- loss_disc_all = loss_disc
175
- optim_d.zero_grad()
176
- scaler.scale(loss_disc_all).backward()
177
- scaler.unscale_(optim_d)
178
- grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
179
- scaler.step(optim_d)
180
-
181
- with autocast(enabled=hps.train.fp16_run):
182
- # Generator
183
- y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
184
- with autocast(enabled=False):
185
- loss_dur = torch.sum(l_length.float())
186
- loss_pitch = torch.sum(l_pitch.float())
187
- loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
188
- loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
189
-
190
- loss_fm = feature_loss(fmap_r, fmap_g)
191
- loss_gen, losses_gen = generator_loss(y_d_hat_g)
192
- loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl + loss_pitch
193
- optim_g.zero_grad()
194
- scaler.scale(loss_gen_all).backward()
195
- scaler.unscale_(optim_g)
196
- grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
197
- scaler.step(optim_g)
198
- scaler.update()
199
-
200
- if rank==0:
201
- if global_step % hps.train.log_interval == 0:
202
- lr = optim_g.param_groups[0]['lr']
203
- losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl, loss_pitch]
204
- logger.info('Train Epoch: {} [{:.0f}%]'.format(
205
- epoch,
206
- 100. * batch_idx / len(train_loader)))
207
- logger.info([x.item() for x in losses] + [global_step, lr])
208
-
209
- scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
210
- scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl, "loss/g/pitch": loss_pitch})
211
-
212
- scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
213
- scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
214
- scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
215
- image_dict = {
216
- "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
217
- "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
218
- "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
219
- "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
220
- }
221
- utils.summarize(
222
- writer=writer,
223
- global_step=global_step,
224
- images=image_dict,
225
- scalars=scalar_dict)
226
-
227
- if global_step % hps.train.eval_interval == 0:
228
- evaluate(hps, net_g, eval_loader, writer_eval)
229
- utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
230
- utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
231
- global_step += 1
232
-
233
- if rank == 0:
234
- logger.info('====> Epoch: {}'.format(epoch))
235
-
236
-
237
- def evaluate(hps, generator, eval_loader, writer_eval):
238
- generator.eval()
239
- with torch.no_grad():
240
- for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch, speakers) in enumerate(eval_loader):
241
- x, x_lengths = x.cuda(0), x_lengths.cuda(0)
242
- spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
243
- y, y_lengths = y.cuda(0), y_lengths.cuda(0)
244
- speakers = speakers.cuda(0)
245
- pitch = pitch.cuda(0)
246
- # remove else
247
- x = x[:1]
248
- x_lengths = x_lengths[:1]
249
- spec = spec[:1]
250
- spec_lengths = spec_lengths[:1]
251
- y = y[:1]
252
- y_lengths = y_lengths[:1]
253
- speakers = speakers[:1]
254
- break
255
- y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, pitch, speakers, max_len=1000)
256
- y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
257
-
258
- mel = spec_to_mel_torch(
259
- spec,
260
- hps.data.filter_length,
261
- hps.data.n_mel_channels,
262
- hps.data.sampling_rate,
263
- hps.data.mel_fmin,
264
- hps.data.mel_fmax)
265
- y_hat_mel = mel_spectrogram_torch(
266
- y_hat.squeeze(1).float(),
267
- hps.data.filter_length,
268
- hps.data.n_mel_channels,
269
- hps.data.sampling_rate,
270
- hps.data.hop_length,
271
- hps.data.win_length,
272
- hps.data.mel_fmin,
273
- hps.data.mel_fmax
274
- )
275
- image_dict = {
276
- "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
277
- }
278
- audio_dict = {
279
- "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
280
- }
281
- if global_step == 0:
282
- image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
283
- audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
284
-
285
- utils.summarize(
286
- writer=writer_eval,
287
- global_step=global_step,
288
- images=image_dict,
289
- audios=audio_dict,
290
- audio_sampling_rate=hps.data.sampling_rate
291
- )
292
- generator.train()
293
-
294
-
295
- if __name__ == "__main__":
296
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
transforms.py CHANGED
@@ -1,25 +1,22 @@
1
- import torch
2
- from torch.nn import functional as F
3
-
4
  import numpy as np
5
-
 
6
 
7
  DEFAULT_MIN_BIN_WIDTH = 1e-3
8
  DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
  DEFAULT_MIN_DERIVATIVE = 1e-3
10
 
11
 
12
- def piecewise_rational_quadratic_transform(inputs,
13
  unnormalized_widths,
14
  unnormalized_heights,
15
  unnormalized_derivatives,
16
  inverse=False,
17
- tails=None,
18
  tail_bound=1.,
19
  min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
  min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
  min_derivative=DEFAULT_MIN_DERIVATIVE):
22
-
23
  if tails is None:
24
  spline_fn = rational_quadratic_spline
25
  spline_kwargs = {}
@@ -31,15 +28,15 @@ def piecewise_rational_quadratic_transform(inputs,
31
  }
32
 
33
  outputs, logabsdet = spline_fn(
34
- inputs=inputs,
35
- unnormalized_widths=unnormalized_widths,
36
- unnormalized_heights=unnormalized_heights,
37
- unnormalized_derivatives=unnormalized_derivatives,
38
- inverse=inverse,
39
- min_bin_width=min_bin_width,
40
- min_bin_height=min_bin_height,
41
- min_derivative=min_derivative,
42
- **spline_kwargs
43
  )
44
  return outputs, logabsdet
45
 
@@ -69,7 +66,7 @@ def unconstrained_rational_quadratic_spline(inputs,
69
  logabsdet = torch.zeros_like(inputs)
70
 
71
  if tails == 'linear':
72
- unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
  constant = np.log(np.exp(1 - min_derivative) - 1)
74
  unnormalized_derivatives[..., 0] = constant
75
  unnormalized_derivatives[..., -1] = constant
@@ -93,6 +90,7 @@ def unconstrained_rational_quadratic_spline(inputs,
93
 
94
  return outputs, logabsdet
95
 
 
96
  def rational_quadratic_spline(inputs,
97
  unnormalized_widths,
98
  unnormalized_heights,
@@ -112,21 +110,21 @@ def rational_quadratic_spline(inputs,
112
  if min_bin_height * num_bins > 1.0:
113
  raise ValueError('Minimal bin height too large for the number of bins')
114
 
115
- widths = F.softmax(unnormalized_widths, dim=-1)
116
  widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
  cumwidths = torch.cumsum(widths, dim=-1)
118
- cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
  cumwidths = (right - left) * cumwidths + left
120
  cumwidths[..., 0] = left
121
  cumwidths[..., -1] = right
122
  widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
 
124
- derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
 
126
- heights = F.softmax(unnormalized_heights, dim=-1)
127
  heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
  cumheights = torch.cumsum(heights, dim=-1)
129
- cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
  cumheights = (top - bottom) * cumheights + bottom
131
  cumheights[..., 0] = bottom
132
  cumheights[..., -1] = top
 
 
 
 
1
  import numpy as np
2
+ import torch
3
+ from torch.nn import functional as t_func
4
 
5
  DEFAULT_MIN_BIN_WIDTH = 1e-3
6
  DEFAULT_MIN_BIN_HEIGHT = 1e-3
7
  DEFAULT_MIN_DERIVATIVE = 1e-3
8
 
9
 
10
+ def piecewise_rational_quadratic_transform(inputs,
11
  unnormalized_widths,
12
  unnormalized_heights,
13
  unnormalized_derivatives,
14
  inverse=False,
15
+ tails=None,
16
  tail_bound=1.,
17
  min_bin_width=DEFAULT_MIN_BIN_WIDTH,
18
  min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
19
  min_derivative=DEFAULT_MIN_DERIVATIVE):
 
20
  if tails is None:
21
  spline_fn = rational_quadratic_spline
22
  spline_kwargs = {}
 
28
  }
29
 
30
  outputs, logabsdet = spline_fn(
31
+ inputs=inputs,
32
+ unnormalized_widths=unnormalized_widths,
33
+ unnormalized_heights=unnormalized_heights,
34
+ unnormalized_derivatives=unnormalized_derivatives,
35
+ inverse=inverse,
36
+ min_bin_width=min_bin_width,
37
+ min_bin_height=min_bin_height,
38
+ min_derivative=min_derivative,
39
+ **spline_kwargs
40
  )
41
  return outputs, logabsdet
42
 
 
66
  logabsdet = torch.zeros_like(inputs)
67
 
68
  if tails == 'linear':
69
+ unnormalized_derivatives = t_func.pad(unnormalized_derivatives, pad=(1, 1))
70
  constant = np.log(np.exp(1 - min_derivative) - 1)
71
  unnormalized_derivatives[..., 0] = constant
72
  unnormalized_derivatives[..., -1] = constant
 
90
 
91
  return outputs, logabsdet
92
 
93
+
94
  def rational_quadratic_spline(inputs,
95
  unnormalized_widths,
96
  unnormalized_heights,
 
110
  if min_bin_height * num_bins > 1.0:
111
  raise ValueError('Minimal bin height too large for the number of bins')
112
 
113
+ widths = t_func.softmax(unnormalized_widths, dim=-1)
114
  widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
115
  cumwidths = torch.cumsum(widths, dim=-1)
116
+ cumwidths = t_func.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
117
  cumwidths = (right - left) * cumwidths + left
118
  cumwidths[..., 0] = left
119
  cumwidths[..., -1] = right
120
  widths = cumwidths[..., 1:] - cumwidths[..., :-1]
121
 
122
+ derivatives = min_derivative + t_func.softplus(unnormalized_derivatives)
123
 
124
+ heights = t_func.softmax(unnormalized_heights, dim=-1)
125
  heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
126
  cumheights = torch.cumsum(heights, dim=-1)
127
+ cumheights = t_func.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
128
  cumheights = (top - bottom) * cumheights + bottom
129
  cumheights[..., 0] = bottom
130
  cumheights[..., -1] = top
utils.py CHANGED
@@ -1,13 +1,14 @@
1
- import os
2
- import glob
3
- import sys
4
  import argparse
5
- import logging
6
  import json
 
 
7
  import subprocess
 
 
8
  import numpy as np
9
- from scipy.io.wavfile import read
10
  import torch
 
11
 
12
  MATPLOTLIB_FLAG = False
13
 
@@ -16,246 +17,247 @@ logger = logging
16
 
17
 
18
  def load_checkpoint(checkpoint_path, model, optimizer=None):
19
- assert os.path.isfile(checkpoint_path)
20
- checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
21
- iteration = checkpoint_dict['iteration']
22
- learning_rate = checkpoint_dict['learning_rate']
23
- if optimizer is not None:
24
- optimizer.load_state_dict(checkpoint_dict['optimizer'])
25
- # print(1111)
26
- saved_state_dict = checkpoint_dict['model']
27
- # print(1111)
28
-
29
- if hasattr(model, 'module'):
30
- state_dict = model.module.state_dict()
31
- else:
32
- state_dict = model.state_dict()
33
- new_state_dict= {}
34
- for k, v in state_dict.items():
35
- try:
36
- new_state_dict[k] = saved_state_dict[k]
37
- except:
38
- logger.info("%s is not in the checkpoint" % k)
39
- new_state_dict[k] = v
40
- if hasattr(model, 'module'):
41
- model.module.load_state_dict(new_state_dict)
42
- else:
43
- model.load_state_dict(new_state_dict)
44
- logger.info("Loaded checkpoint '{}' (iteration {})" .format(
45
- checkpoint_path, iteration))
46
- return model, optimizer, learning_rate, iteration
 
47
 
48
 
49
  def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
50
- logger.info("Saving model and optimizer state at iteration {} to {}".format(
51
- iteration, checkpoint_path))
52
- if hasattr(model, 'module'):
53
- state_dict = model.module.state_dict()
54
- else:
55
- state_dict = model.state_dict()
56
- torch.save({'model': state_dict,
57
- 'iteration': iteration,
58
- 'optimizer': optimizer.state_dict(),
59
- 'learning_rate': learning_rate}, checkpoint_path)
60
 
61
 
62
  def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
63
- for k, v in scalars.items():
64
- writer.add_scalar(k, v, global_step)
65
- for k, v in histograms.items():
66
- writer.add_histogram(k, v, global_step)
67
- for k, v in images.items():
68
- writer.add_image(k, v, global_step, dataformats='HWC')
69
- for k, v in audios.items():
70
- writer.add_audio(k, v, global_step, audio_sampling_rate)
71
 
72
 
73
  def latest_checkpoint_path(dir_path, regex="G_*.pth"):
74
- f_list = glob.glob(os.path.join(dir_path, regex))
75
- f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
76
- x = f_list[-1]
77
- print(x)
78
- return x
79
 
80
 
81
  def plot_spectrogram_to_numpy(spectrogram):
82
- global MATPLOTLIB_FLAG
83
- if not MATPLOTLIB_FLAG:
84
- import matplotlib
85
- matplotlib.use("Agg")
86
- MATPLOTLIB_FLAG = True
87
- mpl_logger = logging.getLogger('matplotlib')
88
- mpl_logger.setLevel(logging.WARNING)
89
- import matplotlib.pylab as plt
90
- import numpy as np
91
-
92
- fig, ax = plt.subplots(figsize=(10,2))
93
- im = ax.imshow(spectrogram, aspect="auto", origin="lower",
94
- interpolation='none')
95
- plt.colorbar(im, ax=ax)
96
- plt.xlabel("Frames")
97
- plt.ylabel("Channels")
98
- plt.tight_layout()
99
-
100
- fig.canvas.draw()
101
- data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
102
- data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
103
- plt.close()
104
- return data
105
 
106
 
107
  def plot_alignment_to_numpy(alignment, info=None):
108
- global MATPLOTLIB_FLAG
109
- if not MATPLOTLIB_FLAG:
110
- import matplotlib
111
- matplotlib.use("Agg")
112
- MATPLOTLIB_FLAG = True
113
- mpl_logger = logging.getLogger('matplotlib')
114
- mpl_logger.setLevel(logging.WARNING)
115
- import matplotlib.pylab as plt
116
- import numpy as np
117
-
118
- fig, ax = plt.subplots(figsize=(6, 4))
119
- im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
120
- interpolation='none')
121
- fig.colorbar(im, ax=ax)
122
- xlabel = 'Decoder timestep'
123
- if info is not None:
124
- xlabel += '\n\n' + info
125
- plt.xlabel(xlabel)
126
- plt.ylabel('Encoder timestep')
127
- plt.tight_layout()
128
-
129
- fig.canvas.draw()
130
- data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
131
- data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
132
- plt.close()
133
- return data
134
 
135
 
136
  def load_wav_to_torch(full_path):
137
- sampling_rate, data = read(full_path)
138
- return torch.FloatTensor(data.astype(np.float32)), sampling_rate
139
 
140
 
141
  def load_filepaths_and_text(filename, split="|"):
142
- with open(filename, encoding='utf-8') as f:
143
- filepaths_and_text = [line.strip().split(split) for line in f]
144
- return filepaths_and_text
145
 
146
 
147
  def get_hparams(init=True):
148
- parser = argparse.ArgumentParser()
149
- parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
150
- help='JSON file for configuration')
151
- parser.add_argument('-m', '--model', type=str, required=True,
152
- help='Model name')
153
-
154
- args = parser.parse_args()
155
- model_dir = os.path.join("./logs", args.model)
156
-
157
- if not os.path.exists(model_dir):
158
- os.makedirs(model_dir)
159
-
160
- config_path = args.config
161
- config_save_path = os.path.join(model_dir, "config.json")
162
- if init:
163
- with open(config_path, "r") as f:
164
- data = f.read()
165
- with open(config_save_path, "w") as f:
166
- f.write(data)
167
- else:
168
- with open(config_save_path, "r") as f:
169
- data = f.read()
170
- config = json.loads(data)
171
-
172
- hparams = HParams(**config)
173
- hparams.model_dir = model_dir
174
- return hparams
175
 
176
 
177
  def get_hparams_from_dir(model_dir):
178
- config_save_path = os.path.join(model_dir, "config.json")
179
- with open(config_save_path, "r") as f:
180
- data = f.read()
181
- config = json.loads(data)
182
 
183
- hparams =HParams(**config)
184
- hparams.model_dir = model_dir
185
- return hparams
186
 
187
 
188
  def get_hparams_from_file(config_path):
189
- with open(config_path, "r") as f:
190
- data = f.read()
191
- config = json.loads(data)
192
 
193
- hparams =HParams(**config)
194
- return hparams
195
 
196
 
197
  def check_git_hash(model_dir):
198
- source_dir = os.path.dirname(os.path.realpath(__file__))
199
- if not os.path.exists(os.path.join(source_dir, ".git")):
200
- logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
201
- source_dir
202
- ))
203
- return
204
 
205
- cur_hash = subprocess.getoutput("git rev-parse HEAD")
206
 
207
- path = os.path.join(model_dir, "githash")
208
- if os.path.exists(path):
209
- saved_hash = open(path).read()
210
- if saved_hash != cur_hash:
211
- logger.warn("git hash values are different. {}(saved) != {}(current)".format(
212
- saved_hash[:8], cur_hash[:8]))
213
- else:
214
- open(path, "w").write(cur_hash)
215
 
216
 
217
  def get_logger(model_dir, filename="train.log"):
218
- global logger
219
- logger = logging.getLogger(os.path.basename(model_dir))
220
- logger.setLevel(logging.DEBUG)
221
-
222
- formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
223
- if not os.path.exists(model_dir):
224
- os.makedirs(model_dir)
225
- h = logging.FileHandler(os.path.join(model_dir, filename))
226
- h.setLevel(logging.DEBUG)
227
- h.setFormatter(formatter)
228
- logger.addHandler(h)
229
- return logger
230
-
231
-
232
- class HParams():
233
- def __init__(self, **kwargs):
234
- for k, v in kwargs.items():
235
- if type(v) == dict:
236
- v = HParams(**v)
237
- self[k] = v
238
-
239
- def keys(self):
240
- return self.__dict__.keys()
241
-
242
- def items(self):
243
- return self.__dict__.items()
244
-
245
- def values(self):
246
- return self.__dict__.values()
247
-
248
- def __len__(self):
249
- return len(self.__dict__)
250
-
251
- def __getitem__(self, key):
252
- return getattr(self, key)
253
-
254
- def __setitem__(self, key, value):
255
- return setattr(self, key, value)
256
-
257
- def __contains__(self, key):
258
- return key in self.__dict__
259
-
260
- def __repr__(self):
261
- return self.__dict__.__repr__()
 
 
 
 
1
  import argparse
2
+ import glob
3
  import json
4
+ import logging
5
+ import os
6
  import subprocess
7
+ import sys
8
+
9
  import numpy as np
 
10
  import torch
11
+ from scipy.io.wavfile import read
12
 
13
  MATPLOTLIB_FLAG = False
14
 
 
17
 
18
 
19
  def load_checkpoint(checkpoint_path, model, optimizer=None):
20
+ assert os.path.isfile(checkpoint_path)
21
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
22
+ iteration = checkpoint_dict['iteration']
23
+ learning_rate = checkpoint_dict['learning_rate']
24
+ if optimizer is not None:
25
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
26
+ # print(1111)
27
+ saved_state_dict = checkpoint_dict['model']
28
+ # print(1111)
29
+
30
+ if hasattr(model, 'module'):
31
+ state_dict = model.module.state_dict()
32
+ else:
33
+ state_dict = model.state_dict()
34
+ new_state_dict = {}
35
+ for k, v in state_dict.items():
36
+ try:
37
+ new_state_dict[k] = saved_state_dict[k]
38
+ except Exception as e:
39
+ logger.info(e)
40
+ logger.info("%s is not in the checkpoint" % k)
41
+ new_state_dict[k] = v
42
+ if hasattr(model, 'module'):
43
+ model.module.load_state_dict(new_state_dict)
44
+ else:
45
+ model.load_state_dict(new_state_dict)
46
+ logger.info("Loaded checkpoint '{}' (iteration {})".format(
47
+ checkpoint_path, iteration))
48
+ return model, optimizer, learning_rate, iteration
49
 
50
 
51
  def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
52
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
53
+ iteration, checkpoint_path))
54
+ if hasattr(model, 'module'):
55
+ state_dict = model.module.state_dict()
56
+ else:
57
+ state_dict = model.state_dict()
58
+ torch.save({'model': state_dict,
59
+ 'iteration': iteration,
60
+ 'optimizer': optimizer.state_dict(),
61
+ 'learning_rate': learning_rate}, checkpoint_path)
62
 
63
 
64
  def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
65
+ for k, v in scalars.items():
66
+ writer.add_scalar(k, v, global_step)
67
+ for k, v in histograms.items():
68
+ writer.add_histogram(k, v, global_step)
69
+ for k, v in images.items():
70
+ writer.add_image(k, v, global_step, dataformats='HWC')
71
+ for k, v in audios.items():
72
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
73
 
74
 
75
  def latest_checkpoint_path(dir_path, regex="G_*.pth"):
76
+ f_list = glob.glob(os.path.join(dir_path, regex))
77
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
78
+ x = f_list[-1]
79
+ print(x)
80
+ return x
81
 
82
 
83
  def plot_spectrogram_to_numpy(spectrogram):
84
+ global MATPLOTLIB_FLAG
85
+ if not MATPLOTLIB_FLAG:
86
+ import matplotlib
87
+ matplotlib.use("Agg")
88
+ MATPLOTLIB_FLAG = True
89
+ mpl_logger = logging.getLogger('matplotlib')
90
+ mpl_logger.setLevel(logging.WARNING)
91
+ import matplotlib.pylab as plt
92
+ import numpy
93
+
94
+ fig, ax = plt.subplots(figsize=(10, 2))
95
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
96
+ interpolation='none')
97
+ plt.colorbar(im, ax=ax)
98
+ plt.xlabel("Frames")
99
+ plt.ylabel("Channels")
100
+ plt.tight_layout()
101
+
102
+ fig.canvas.draw()
103
+ data = numpy.fromstring(fig.canvas.tostring_rgb(), dtype=numpy.uint8, sep='')
104
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
105
+ plt.close()
106
+ return data
107
 
108
 
109
  def plot_alignment_to_numpy(alignment, info=None):
110
+ global MATPLOTLIB_FLAG
111
+ if not MATPLOTLIB_FLAG:
112
+ import matplotlib
113
+ matplotlib.use("Agg")
114
+ MATPLOTLIB_FLAG = True
115
+ mpl_logger = logging.getLogger('matplotlib')
116
+ mpl_logger.setLevel(logging.WARNING)
117
+ import matplotlib.pylab as plt
118
+ import numpy
119
+
120
+ fig, ax = plt.subplots(figsize=(6, 4))
121
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
122
+ interpolation='none')
123
+ fig.colorbar(im, ax=ax)
124
+ xlabel = 'Decoder timestep'
125
+ if info is not None:
126
+ xlabel += '\n\n' + info
127
+ plt.xlabel(xlabel)
128
+ plt.ylabel('Encoder timestep')
129
+ plt.tight_layout()
130
+
131
+ fig.canvas.draw()
132
+ data = numpy.fromstring(fig.canvas.tostring_rgb(), dtype=numpy.uint8, sep='')
133
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
134
+ plt.close()
135
+ return data
136
 
137
 
138
  def load_wav_to_torch(full_path):
139
+ sampling_rate, data = read(full_path)
140
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
141
 
142
 
143
  def load_filepaths_and_text(filename, split="|"):
144
+ with open(filename, encoding='utf-8') as f:
145
+ filepaths_and_text = [line.strip().split(split) for line in f]
146
+ return filepaths_and_text
147
 
148
 
149
  def get_hparams(init=True):
150
+ parser = argparse.ArgumentParser()
151
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
152
+ help='JSON file for configuration')
153
+ parser.add_argument('-m', '--model', type=str, required=True,
154
+ help='Model name')
155
+
156
+ args = parser.parse_args()
157
+ model_dir = os.path.join("./logs", args.model)
158
+
159
+ if not os.path.exists(model_dir):
160
+ os.makedirs(model_dir)
161
+
162
+ config_path = args.config
163
+ config_save_path = os.path.join(model_dir, "config.json")
164
+ if init:
165
+ with open(config_path, "r") as f:
166
+ data = f.read()
167
+ with open(config_save_path, "w") as f:
168
+ f.write(data)
169
+ else:
170
+ with open(config_save_path, "r") as f:
171
+ data = f.read()
172
+ config = json.loads(data)
173
+
174
+ hparams = HParams(**config)
175
+ hparams.model_dir = model_dir
176
+ return hparams
177
 
178
 
179
  def get_hparams_from_dir(model_dir):
180
+ config_save_path = os.path.join(model_dir, "config.json")
181
+ with open(config_save_path, "r") as f:
182
+ data = f.read()
183
+ config = json.loads(data)
184
 
185
+ hparams = HParams(**config)
186
+ hparams.model_dir = model_dir
187
+ return hparams
188
 
189
 
190
  def get_hparams_from_file(config_path):
191
+ with open(config_path, "r", encoding="utf-8") as f:
192
+ data = f.read()
193
+ config = json.loads(data)
194
 
195
+ hparams = HParams(**config)
196
+ return hparams
197
 
198
 
199
  def check_git_hash(model_dir):
200
+ source_dir = os.path.dirname(os.path.realpath(__file__))
201
+ if not os.path.exists(os.path.join(source_dir, ".git")):
202
+ logger.warning("{} is not a git repository, therefore hash value comparison will be ignored.".format(
203
+ source_dir
204
+ ))
205
+ return
206
 
207
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
208
 
209
+ path = os.path.join(model_dir, "githash")
210
+ if os.path.exists(path):
211
+ saved_hash = open(path).read()
212
+ if saved_hash != cur_hash:
213
+ logger.warning("git hash values are different. {}(saved) != {}(current)".format(
214
+ saved_hash[:8], cur_hash[:8]))
215
+ else:
216
+ open(path, "w").write(cur_hash)
217
 
218
 
219
  def get_logger(model_dir, filename="train.log"):
220
+ global logger
221
+ logger = logging.getLogger(os.path.basename(model_dir))
222
+ logger.setLevel(logging.DEBUG)
223
+
224
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
225
+ if not os.path.exists(model_dir):
226
+ os.makedirs(model_dir)
227
+ h = logging.FileHandler(os.path.join(model_dir, filename))
228
+ h.setLevel(logging.DEBUG)
229
+ h.setFormatter(formatter)
230
+ logger.addHandler(h)
231
+ return logger
232
+
233
+
234
+ class HParams:
235
+ def __init__(self, **kwargs):
236
+ for k, v in kwargs.items():
237
+ if type(v) == dict:
238
+ v = HParams(**v)
239
+ self[k] = v
240
+
241
+ def keys(self):
242
+ return self.__dict__.keys()
243
+
244
+ def items(self):
245
+ return self.__dict__.items()
246
+
247
+ def values(self):
248
+ return self.__dict__.values()
249
+
250
+ def __len__(self):
251
+ return len(self.__dict__)
252
+
253
+ def __getitem__(self, key):
254
+ return getattr(self, key)
255
+
256
+ def __setitem__(self, key, value):
257
+ return setattr(self, key, value)
258
+
259
+ def __contains__(self, key):
260
+ return key in self.__dict__
261
+
262
+ def __repr__(self):
263
+ return self.__dict__.__repr__()