Vivien Chappelier commited on
Commit
8b44d8d
1 Parent(s): 1a5c99e

GPU version

Browse files
Files changed (2) hide show
  1. .gitattributes +2 -0
  2. app.py +23 -6
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint_000.pth filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint_*.pth filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -1,17 +1,34 @@
 
 
 
1
  import gradio as gr
2
- from optimum.intel.openvino import OVStableDiffusionPipeline
3
 
4
- pipe = OVStableDiffusionPipeline.from_pretrained("OpenVINO/stable-diffusion-2-1-quantized", compile=False)
5
- pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1)
6
- pipe.compile()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  prompt = "sailing ship in storm by Rembrandt"
9
 
10
- def generate(name):
11
  output = pipe(prompt, num_inference_steps=50, output_type="pil")
12
  output.images[0].save("result.png")
13
  return output.images[0]
14
 
15
  iface = gr.Interface(fn=generate, inputs=[gr.Textbox(label="Prompt", value=prompt)], outputs=[gr.Image(type="pil")])
16
- iface.launch()
17
 
 
1
+ import socketserver
2
+ socketserver.TCPServer.allow_reuse_address = True
3
+
4
  import gradio as gr
 
5
 
6
+ import torch
7
+
8
+ from diffusers import StableDiffusionPipeline
9
+
10
+ pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float16)
11
+
12
+ # load the patched VQ-VAE
13
+ patched_decoder_ckpt = "checkpoint_000.pth"
14
+
15
+ if patched_decoder_ckpt is not None:
16
+ sd2 = torch.load(patched_decoder_ckpt)['ldm_decoder']
17
+ #print("patching keys for first_stage_model: ", sd2.keys())
18
+
19
+ msg = pipe.vae.load_state_dict(sd2, strict=False)
20
+ print(f"loaded LDM decoder state_dict with message\n{msg}")
21
+ print("you should check that the decoder keys are correctly matched")
22
+
23
+ pipe = pipe.to("cuda")
24
 
25
  prompt = "sailing ship in storm by Rembrandt"
26
 
27
+ def generate(prompt):
28
  output = pipe(prompt, num_inference_steps=50, output_type="pil")
29
  output.images[0].save("result.png")
30
  return output.images[0]
31
 
32
  iface = gr.Interface(fn=generate, inputs=[gr.Textbox(label="Prompt", value=prompt)], outputs=[gr.Image(type="pil")])
33
+ iface.launch(server_name="0.0.0.0")
34