Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -7,16 +7,19 @@ import gradio as gr
|
|
7 |
model = EncoderDecoderModel.from_pretrained("imamnurby/rob2rand_chen_w_prefix_c_fc")
|
8 |
tokenizer = RobertaTokenizer.from_pretrained("imamnurby/rob2rand_chen_w_prefix_c_fc")
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
if gen_mode=="Channel":
|
13 |
-
|
14 |
elif gen_mode=="Function":
|
15 |
-
|
16 |
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
input_ids = tokenizer.encode(desc, return_tensors='pt')
|
20 |
|
21 |
# activate beam search and early_stopping
|
22 |
preds = model.generate(
|
@@ -53,6 +56,7 @@ def generate_preds(gen_mode, desc):
|
|
53 |
}
|
54 |
return pd.DataFrame(df)
|
55 |
|
|
|
56 |
demo = gr.Blocks()
|
57 |
with demo:
|
58 |
gr.Markdown("<h1><center>RecipeGen: Automated TAPs Generation Tool</center></h1>")
|
@@ -76,7 +80,7 @@ with demo:
|
|
76 |
with gr.Row():
|
77 |
generate = gr.Button("Generate")
|
78 |
gr.Markdown("<h1><center>Results</center></h1>")
|
79 |
-
results = gr.Dataframe(headers=["Trigger", "Trigger Description", "Action", "Action Description"]
|
80 |
|
81 |
with gr.TabItem("Field"):
|
82 |
with gr.Column():
|
@@ -88,5 +92,5 @@ with demo:
|
|
88 |
gr.Markdown("<h1><center>Results</center></h1>")
|
89 |
results_field = gr.Dataframe(headers=["Trigger", "Trigger Description", "Trigger Fields", "Action", "Action Description", "Action Fields"])
|
90 |
|
91 |
-
generate.click(
|
92 |
demo.launch()
|
|
|
7 |
model = EncoderDecoderModel.from_pretrained("imamnurby/rob2rand_chen_w_prefix_c_fc")
|
8 |
tokenizer = RobertaTokenizer.from_pretrained("imamnurby/rob2rand_chen_w_prefix_c_fc")
|
9 |
|
10 |
+
from transformers import RobertaTokenizer, EncoderDecoderModel
|
11 |
+
import pandas as pd
|
12 |
+
def generate_taps(gen_mode, desc):
|
13 |
+
input_desc = desc.lower()
|
14 |
if gen_mode=="Channel":
|
15 |
+
input_desc = "GENERATE TRIGGER AND ACTION CHANNEL ONLY <pf> " + input_desc
|
16 |
elif gen_mode=="Function":
|
17 |
+
input_desc = "GENERATE BOTH CHANNEL AND FUNCTION FOR TRIGGER AND ACTION <pf> " + input_desc
|
18 |
|
19 |
+
model = EncoderDecoderModel.from_pretrained("imamnurby/rob2rand_chen_w_prefix_c_fc")
|
20 |
+
tokenizer = RobertaTokenizer.from_pretrained("imamnurby/rob2rand_chen_w_prefix_c_fc")
|
21 |
|
22 |
+
input_ids = tokenizer.encode(input_desc, return_tensors='pt')
|
|
|
23 |
|
24 |
# activate beam search and early_stopping
|
25 |
preds = model.generate(
|
|
|
56 |
}
|
57 |
return pd.DataFrame(df)
|
58 |
|
59 |
+
|
60 |
demo = gr.Blocks()
|
61 |
with demo:
|
62 |
gr.Markdown("<h1><center>RecipeGen: Automated TAPs Generation Tool</center></h1>")
|
|
|
80 |
with gr.Row():
|
81 |
generate = gr.Button("Generate")
|
82 |
gr.Markdown("<h1><center>Results</center></h1>")
|
83 |
+
results = gr.Dataframe(headers=["Trigger", "Trigger Description", "Action", "Action Description"])
|
84 |
|
85 |
with gr.TabItem("Field"):
|
86 |
with gr.Column():
|
|
|
92 |
gr.Markdown("<h1><center>Results</center></h1>")
|
93 |
results_field = gr.Dataframe(headers=["Trigger", "Trigger Description", "Trigger Fields", "Action", "Action Description", "Action Fields"])
|
94 |
|
95 |
+
generate.click(generate_taps, inputs=[gen_mode, desc], outputs=[results])
|
96 |
demo.launch()
|