File size: 5,690 Bytes
5517be7
 
 
 
 
 
 
b772f7c
5517be7
 
b772f7c
5517be7
 
 
 
 
b772f7c
5517be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b772f7c
5517be7
 
 
 
 
 
 
 
 
 
 
 
 
b772f7c
5517be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b772f7c
 
5517be7
 
b772f7c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import time
import gradio as gr
import utils
import commons
from models import SynthesizerTrn
from text import text_to_sequence
from torch import no_grad, LongTensor
import torch

hps_ms = utils.get_hparams_from_file(r'./model/config.json')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net_g_ms = SynthesizerTrn(
    len(hps_ms.symbols),
    hps_ms.data.filter_length // 2 + 1,
    hps_ms.train.segment_size // hps_ms.data.hop_length,
    n_speakers=hps_ms.data.n_speakers,
    **hps_ms.model).to(device)
_ = net_g_ms.eval()
speakers = hps_ms.speakers
model, optimizer, learning_rate, epochs = utils.load_checkpoint(r'./model/G_953000.pth', net_g_ms, None)

def get_text(text, hps):
    text_norm, clean_text = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = LongTensor(text_norm)
    return text_norm, clean_text

def vits(text, language, speaker_id, noise_scale, noise_scale_w, length_scale):
    start = time.perf_counter()
    if not len(text):
        return "输入文本不能为空!", None, None
    text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
    if len(text) > 500:
        return f"输入文字过长!{len(text)}>100", None, None
    if language == 0:
        text = f"[ZH]{text}[ZH]"
    elif language == 1:
        text = f"[JA]{text}[JA]"
    else:
        text = f"{text}"
    stn_tst, clean_text = get_text(text, hps_ms)
    with no_grad():
        x_tst = stn_tst.unsqueeze(0)
        x_tst_lengths = LongTensor([stn_tst.size(0)])
        speaker_id = LongTensor([speaker_id])
        audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=speaker_id, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
                               length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()

    return "生成成功!", (22050, audio), f"生成耗时 {round(time.perf_counter()-start, 2)} s"

def search_speaker(search_value):
    for s in speakers:
        if search_value == s:
            return s
    for s in speakers:
        if search_value in s:
            return s

def change_lang(language):
    if language == 0:
        return 0.6, 0.668, 1.2
    else:
        return 0.6, 0.668, 1.1

download_audio_js = """
() =>{{
    let root = document.querySelector("body > gradio-app");
    if (root.shadowRoot != null)
        root = root.shadowRoot;
    let audio = root.querySelector("#tts-audio").querySelector("audio");
    let text = root.querySelector("#input-text").querySelector("textarea");
    if (audio == undefined)
        return;
    text = text.value;
    if (text == undefined)
        text = Math.floor(Math.random()*100000000);
    audio = audio.src;
    let oA = document.createElement("a");
    oA.download = text.substr(0, 20)+'.wav';
    oA.href = audio;
    document.body.appendChild(oA);
    oA.click();
    oA.remove();
}}
"""

if __name__ == '__main__':
    with gr.Blocks() as app:
        gr.Markdown(
            "# <center> VITS语音在线合成demo\n"
            "<div align='center'>主要有赛马娘,原神中文,原神日语,崩坏3的音色</div>"
            '<div align="center"><a><font color="#dd0000">结果有随机性,语调可能很奇怪,可多次生成取最佳效果</font></a></div>'
            '<div align="center"><a><font color="#dd0000">标点符号会影响生成的结果</font></a></div>'
        )

        with gr.Tabs():
            with gr.TabItem("vits"):
                with gr.Row():
                    with gr.Column():
                        input_text = gr.Textbox(label="Text (100 words limitation)", lines=5, value="今天晚上吃啥好呢。", elem_id=f"input-text")
                        lang = gr.Dropdown(label="Language", choices=["中文", "日语", "中日混合(中文用[ZH][ZH]包裹起来,日文用[JA][JA]包裹起来)"],
                                    type="index", value="中文")
                        btn = gr.Button(value="Submit")
                        with gr.Row():
                            search = gr.Textbox(label="Search Speaker", lines=1)
                            btn2 = gr.Button(value="Search")
                        sid = gr.Dropdown(label="Speaker", choices=speakers, type="index", value=speakers[228])
                        with gr.Row():
                            ns = gr.Slider(label="noise_scale(控制感情变化程度)", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
                            nsw = gr.Slider(label="noise_scale_w(控制音素发音长度)", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
                            ls = gr.Slider(label="length_scale(控制整体语速)", minimum=0.1, maximum=2.0, step=0.1, value=1.2, interactive=True)
                    with gr.Column():
                        o1 = gr.Textbox(label="Output Message")
                        o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio")
                        o3 = gr.Textbox(label="Extra Info")
                        download = gr.Button("Download Audio")
                    btn.click(vits, inputs=[input_text, lang, sid, ns, nsw, ls], outputs=[o1, o2, o3], api_name="generate")
                    download.click(None, [], [], _js=download_audio_js.format())
                    btn2.click(search_speaker, inputs=[search], outputs=[sid])
                    lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
            with gr.TabItem("可用人物一览"):
                gr.Radio(label="Speaker", choices=speakers, interactive=False, type="index")
    app.queue(concurrency_count=1).launch()