from base64 import b64encode import numpy import torch from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel from huggingface_hub import notebook_login # For video display: from IPython.display import HTML from matplotlib import pyplot as plt from pathlib import Path from PIL import Image from torch import autocast from torchvision import transforms as tfms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer, logging # Set device torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" # Load the autoencoder model which will be used to decode the latents into image space. import os vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") # Load the tokenizer and text encoder to tokenize and encode the text. tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") # The UNet model for generating the latents. unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") # The noise scheduler scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) # To the GPU we go! vae = vae.to(torch_device) text_encoder = text_encoder.to(torch_device) unet = unet.to(torch_device) def pil_to_latent(input_im): # Single image -> single latent in a batch (so size 1, 4, 64, 64) with torch.no_grad(): latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling return 0.18215 * latent.latent_dist.sample() def latents_to_pil(latents): # bath of latents -> list of images latents = (1 / 0.18215) * latents with torch.no_grad(): image = vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.detach().cpu().permute(0, 2, 3, 1).numpy() images = (image * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] # pil_images[0].save('/raid/users/mohammadibrahim-st/TSAI/Assignment24/Depth/mouseseed64bright.png') return pil_images def set_timesteps(scheduler, num_inference_steps): scheduler.set_timesteps(num_inference_steps) scheduler.timesteps = scheduler.timesteps.to(torch.float32) def brightness_loss(images, target_brightness): # Convert images to grayscale to calculate brightness grayscale_images = images.mean(dim=1, keepdim=True) error = torch.abs(grayscale_images - target_brightness).mean() return error def generate_with_embs(text_input, text_embeddings, blossval): height = 512 # default height of Stable Diffusion width = 512 # default width of Stable Diffusion num_inference_steps = 30 # Number of denoising steps guidance_scale = 7.5 # Scale for classifier-free guidance generator = torch.manual_seed(164) # Seed generator to create the inital latent noise batch_size = 1 blue_loss_scale=200 max_length = text_input.input_ids.shape[-1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Prep Scheduler set_timesteps(scheduler, num_inference_steps) # Prep latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Loop for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # predict the noise residual with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # perform guidance noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 if i%5 == 0: # Requires grad on the latents latents = latents.detach().requires_grad_() # Get the predicted x0: latents_x0 = latents - sigma * noise_pred # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample # Decode to image space denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) # Calculate loss loss = brightness_loss(denoised_images, blossval) * blue_loss_scale # Occasionally print it out if i%10==0: print(i, 'loss:', loss.item()) # Get gradient cond_grad = torch.autograd.grad(loss, latents)[0] # Modify the latents based on this gradient latents = latents.detach() - cond_grad * sigma**2 # Now step with scheduler latents = scheduler.step(noise_pred, t, latents).prev_sample return latents_to_pil(latents)[0] def build_causal_attention_mask(bsz, seq_len, dtype): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) mask.fill_(torch.tensor(torch.finfo(dtype).min)) mask.triu_(1) # zero out the lower diagonal mask = mask.unsqueeze(1) # expand mask return mask def get_output_embeds(input_embeddings): # CLIP's text model uses causal mask, so we prepare it here: bsz, seq_len = input_embeddings.shape[:2] causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) # Getting the output embeddings involves calling the model with passing output_hidden_states=True # so that it doesn't just return the pooled final predictions: encoder_outputs = text_encoder.text_model.encoder( inputs_embeds=input_embeddings, attention_mask=None, # We aren't using an attention mask so that can be None causal_attention_mask=causal_attention_mask.to(torch_device), output_attentions=None, output_hidden_states=True, # We want the output embs not the final output return_dict=None, ) # We're interested in the output hidden state only output = encoder_outputs[0] # There is a final layer norm we need to pass these through output = text_encoder.text_model.final_layer_norm(output) # And now they're ready! return output # out_embs_test = get_output_embeds(input_embeddings) # Feed through the model with our new function # print(out_embs_test.shape) # Check the output shape # out_embs_test # Inspect the output current_directory = os.path.dirname(__file__) # Construct the paths dynamically birb_embed = torch.load(os.path.join(current_directory, 'Depth', 'learned_embeds.bin')) birb_embedjerry = torch.load(os.path.join(current_directory, 'Jerry mouse', 'learned_embeds.bin')) birb_embedmobius = torch.load(os.path.join(current_directory, 'Mobius', 'learned_embeds.bin')) birb_embedoilpaint = torch.load(os.path.join(current_directory, 'Oil paint', 'learned_embeds.bin')) birb_embedpolygon = torch.load(os.path.join(current_directory, 'Polygon', 'learned_embeds.bin')) import torch import os import gradio as gr # Load the embeddings # birb_embed = torch.load('/raid/users/mohammadibrahim-st/TSAI/Assignment24/Depth/learned_embeds.bin') # birb_embedjerry = torch.load("/raid/users/mohammadibrahim-st/TSAI/Assignment24/Jerry mouse/learned_embeds.bin") # birb_embedmobius = torch.load('/raid/users/mohammadibrahim-st/TSAI/Assignment24/Mobius/learned_embeds.bin') # birb_embedoilpaint = torch.load('/raid/users/mohammadibrahim-st/TSAI/Assignment24/Oil paint/learned_embeds.bin') # birb_embedpolygon = torch.load('/raid/users/mohammadibrahim-st/TSAI/Assignment24/Polygon/learned_embeds.bin') # Set GRADIO temp directory def generate_image(prompt, selected_embedding, blossval): # Map selected_embedding to corresponding embedding file and key embedding_dict = { "Depth": (birb_embed, ''), "Jerry mouse": (birb_embedjerry, ''), "Mobius": (birb_embedmobius, ''), "Oil paint": (birb_embedoilpaint, 'oil_style'), "Polygon": (birb_embedpolygon, '') } token_emb_layer = text_encoder.text_model.embeddings.token_embedding pos_emb_layer = text_encoder.text_model.embeddings.position_embedding position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] position_embeddings = pos_emb_layer(position_ids) # Tokenize text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") input_ids = text_input.input_ids.to(torch_device) # Get token embeddings token_embeddings = token_emb_layer(input_ids) # Select the appropriate birb embedding and key based on user input selected_embedding_file, embedding_key = embedding_dict[selected_embedding] replacement_token_embedding = selected_embedding_file[embedding_key].to(torch_device) # Insert this into the token embeddings token_embeddings[0, torch.where(input_ids[0] == 6829)] = replacement_token_embedding.to(torch_device) # Combine with pos embs input_embeddings = token_embeddings + position_embeddings # Feed through to get final output embs modified_output_embeddings = get_output_embeds(input_embeddings) # Generate an image with this and return it generated_image = generate_with_embs(text_input, modified_output_embeddings, blossval) return generated_image # Define options for the dropdown embedding_options = ["Depth", "Jerry mouse", "Mobius", "Oil paint", "Polygon"] # Create Gradio interface iface = gr.Interface( fn=generate_image, inputs=[ "text", gr.Dropdown(choices=embedding_options, label="Select Style"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Adjust Brightness loss for image (higher means brighter image)") ], outputs="image", title="Image Generation App (Please use the word 'puppy' in the prompt)" ) iface.launch(share=True)