import os from pathlib import Path import cv2 import torch from model import BiSeNet from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm import tqdm # For BiSeNet and for official_224 SimSwap class MaskDataset(Dataset): def __init__(self, img_root, mask_root): img_dir = Path(img_root) self.to_tensor_normalize = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) self.img_files = list(img_dir.glob(f"**/*.jpg")) self.img_files.sort() self.mask_files = [os.path.join(mask_root, os.path.relpath(img_path, img_root)) for img_path in self.img_files] def __len__(self): return len(self.mask_files) def __getitem__(self, index): img = Image.open(self.img_files[index]).convert("RGB") return {"img": self.to_tensor_normalize(img), "mask_path": self.mask_files[index]} class MaskDataLoader: def __init__(self): """Initialize this class""" self.dataset = MaskDataset(img_root="/data/dataset/face_1k/alignHQ", mask_root="/data/dataset/face_1k/mask") self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=8, shuffle=True, num_workers=8, drop_last=False ) def __len__(self): """Return the number of data in the dataset""" return len(self.dataset) / 8 def __iter__(self): """Return a batch of data""" for data in self.dataloader: yield data if __name__ == "__main__": dataloader = MaskDataLoader() bisenet_path = "/data/useful_ckpt/face_parsing/parsing_model_79999_iter.pth" bisenet = BiSeNet(n_classes=19) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") bisenet.to(device) state_dict = torch.load(bisenet_path, map_location=device) bisenet.load_state_dict(state_dict) bisenet.eval() for data in tqdm(dataloader): mask, ignore_ids = bisenet.get_mask(data["img"].to(device), 256) mask = (mask * 255).to(torch.uint8).cpu().numpy().transpose(0, 2, 3, 1).repeat(3, 3) for i in range(mask.shape[0]): if ignore_ids[i]: continue path = data["mask_path"][i] dirname = os.path.dirname(path) os.makedirs(dirname, exist_ok=True) cv2.imwrite(path, mask[i])