import argparse import os import uuid import cv2 import gradio as gr import kornia import numpy as np import torch from loguru import logger from torchaudio.io import StreamReader from torchaudio.io import StreamWriter from benchmark.face_pipeline import alignFace from benchmark.face_pipeline import FaceDetector from benchmark.face_pipeline import inverse_transform_batch from benchmark.face_pipeline import SoftErosion from configs.train_config import TrainConfig from models.model import HifiFace class VideoSwap: def __init__(self, cfg, model=None): self.facedetector = FaceDetector(cfg.face_detector_weights) self.alignface = alignFace() self.work_dir = "." opt = TrainConfig() opt.use_ddp = False self.device = "cuda" self.ffmpeg_device = cfg.ffmpeg_device self.num_frames = 10 self.kps_window = [] checkpoint = (cfg.model_path, cfg.model_idx) if model is None: self.model = HifiFace( opt.identity_extractor_config, is_training=False, device=self.device, load_checkpoint=checkpoint ) else: self.model = model self.model.eval() os.makedirs(self.work_dir, exist_ok=True) uid = uuid.uuid4() self.swapped_video = os.path.join(self.work_dir, f"tmp_{uid}.mp4") # model-idx_image-name_target-video-name.mp4 swapped_with_audio_name = f"result_{uid}.mp4" # 带有音频的换脸视频 self.swapped_video_with_audio = os.path.join(self.work_dir, swapped_with_audio_name) self.smooth_mask = SoftErosion(kernel_size=7, threshold=0.9, iterations=7).to(self.device) def yuv_to_rgb(self, img): img = img.to(torch.float) y = img[..., 0, :, :] u = img[..., 1, :, :] v = img[..., 2, :, :] y /= 255 u = u / 255 - 0.5 v = v / 255 - 0.5 r = y + 1.14 * v g = y + -0.396 * u - 0.581 * v b = y + 2.029 * u rgb = torch.stack([r, g, b], -1) return rgb def rgb_to_yuv(self, img): r = img[..., 0, :, :] g = img[..., 1, :, :] b = img[..., 2, :, :] y = (0.299 * r + 0.587 * g + 0.114 * b) * 255 u = (-0.1471 * r - 0.2889 * g + 0.4360 * b) * 255 + 128 v = (0.6149 * r - 0.5149 * g - 0.1 * b) * 255 + 128 yuv = torch.stack([y, u, v], -1) return torch.clamp(yuv, 0.0, 255.0, out=None).type(dtype=torch.uint8).transpose(3, 2).transpose(2, 1) def _geometry_transfrom_warp_affine(self, swapped_image, inv_att_transforms, frame_size, square_mask): swapped_image = kornia.geometry.transform.warp_affine( swapped_image, inv_att_transforms, frame_size, mode="bilinear", padding_mode="border", align_corners=True, fill_value=torch.zeros(3), ) square_mask = kornia.geometry.transform.warp_affine( square_mask, inv_att_transforms, frame_size, mode="bilinear", padding_mode="zeros", align_corners=True, fill_value=torch.zeros(3), ) return swapped_image, square_mask def smooth_kps(self, kps): self.kps_window.append(kps.flatten()) self.kps_window = self.kps_window[1:] X = np.stack(self.kps_window, axis=1) y = self.kps_window[-1] y_cor = X @ np.linalg.inv(X.transpose() @ X - 0.0007 * np.eye(self.num_frames)) @ X.transpose() @ y self.kps_window[-1] = y_cor return y_cor.reshape((5, 2)) def detect_and_align(self, image, src_is=False): detection = self.facedetector(image) if detection.score is None: self.kps_window = [] return None, None max_score_ind = np.argmax(detection.score, axis=0) kps = detection.key_points[max_score_ind] if len(self.kps_window) < self.num_frames: self.kps_window.append(kps.flatten()) else: kps = self.smooth_kps(kps) align_img, warp_mat = self.alignface.align_face(image, kps, 256) align_img = cv2.resize(align_img, (256, 256)) align_img = align_img.transpose(2, 0, 1) align_img = torch.from_numpy(align_img).unsqueeze(0).to(self.device).float() align_img = align_img / 255.0 if src_is: self.kps_window = [] return align_img, warp_mat def inference(self, source_face, target_video, shape_rate, id_rate, iterations=1): video = cv2.VideoCapture(target_video) # 获取视频宽度 frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) # 获取视频高度 frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 获取帧率 frame_rate = int(video.get(cv2.CAP_PROP_FPS)) video.release() self.frame_size = (frame_height, frame_width) if self.ffmpeg_device == "cuda": self.decode_config = {"frames_per_chunk": 1, "decoder": "h264", "format": "yuv444p"} # self.decode_config = { # "frames_per_chunk": 1, # "decoder": "h264_cuvid", # "decoder_option": {"gpu": "0"}, # "hw_accel": "cuda:0", # } self.encode_config = { "encoder": "h264_nvenc", # GPU Encoder "encoder_format": "yuv444p", "encoder_option": {"gpu": "0", "cq": "10"}, # Run encoding on the cuda:0 device "hw_accel": "cuda:0", # Data comes from cuda:0 device "frame_rate": frame_rate, "height": frame_height, "width": frame_width, "format": "yuv444p", } else: self.decode_config = {"frames_per_chunk": 1, "decoder": "h264", "format": "yuv444p"} self.encode_config = { "encoder": "libx264", "encoder_format": "yuv444p", "frame_rate": frame_rate, "height": frame_height, "width": frame_width, "format": "yuv444p", } src = source_face src, _ = self.detect_and_align(src, src_is=True) logger.info("start swapping") sr = StreamReader(target_video) if self.ffmpeg_device == "cpu": sr.add_basic_video_stream(**self.decode_config) else: sr.add_basic_video_stream(**self.decode_config) # sr.add_video_stream(**self.decode_config) sw = StreamWriter(self.swapped_video) sw.add_video_stream(**self.encode_config) with sw.open(): for (chunk,) in sr.stream(): # StreamReader cuda decode颜色格式默认为yuv需要转为rgb chunk = self.yuv_to_rgb(chunk) image = (chunk * 255).clamp(0, 255).to(torch.uint8)[0].cpu().numpy() align_img, warp_mat = self.detect_and_align(image) chunk = chunk.transpose(3, 2).transpose(2, 1).to(self.device) if align_img is None: result_face = chunk else: with torch.no_grad(): for _ in range(iterations): swapped_face, m_r = self.model.forward(src, align_img, shape_rate, id_rate) swapped_face = torch.clamp(swapped_face, 0, 1) align_img = swapped_face smooth_face_mask, _ = self.smooth_mask(m_r) warp_mat = torch.from_numpy(warp_mat).float().unsqueeze(0) inverse_warp_mat = inverse_transform_batch(warp_mat) swapped_face, smooth_face_mask = self._geometry_transfrom_warp_affine( swapped_face, inverse_warp_mat, self.frame_size, smooth_face_mask ) result_face = (1 - smooth_face_mask) * chunk + smooth_face_mask * swapped_face result_face = self.rgb_to_yuv(result_face).to(self.ffmpeg_device) sw.write_video_chunk(0, result_face) # 将target_video中的音频转移到换脸视频上 command = f"ffmpeg -loglevel error -i {self.swapped_video} -i {target_video} -c copy \ -map 0 -map 1:1? -y -shortest {self.swapped_video_with_audio}" os.system(command) # 删除没有音频的换脸视频 os.system(f"rm {self.swapped_video}") return self.swapped_video_with_audio class ConfigPath: face_detector_weights = "/mnt/c/yangguo/useful_ckpt/face_detector/face_detector_scrfd_10g_bnkps.onnx" model_path = "" model_idx = 80000 ffmpeg_device = "cuda" def main(): cfg = ConfigPath() parser = argparse.ArgumentParser( prog="benchmark", description="What the program does", epilog="Text at the bottom of help" ) parser.add_argument("-m", "--model_path") parser.add_argument("-i", "--model_idx") parser.add_argument("-f", "--ffmpeg_device") args = parser.parse_args() cfg.model_path = args.model_path cfg.model_idx = int(args.model_idx) cfg.ffmpeg_device = args.ffmpeg_device infer = VideoSwap(cfg) def inference(source_face, target_video, shape_rate, id_rate): return infer.inference(source_face, target_video, shape_rate, id_rate) output = gr.Video(value=None, label="换脸结果") demo = gr.Interface( fn=inference, inputs=[ gr.Image(shape=None, label="选脸图"), gr.Video(value=None, label="目标视频"), gr.Slider( minimum=0.0, maximum=1.0, value=1.0, step=0.1, label="3d结构相似度(1.0表示完全替换)", ), gr.Slider( minimum=0.0, maximum=1.0, value=1.0, step=0.1, label="人脸特征相似度(1.0表示完全替换)", ), ], outputs=output, title="HiConFace视频人脸融合系统", description="v1.0: developed by yiwise CV group", ) demo.launch(server_name="0.0.0.0", server_port=7860) if __name__ == "__main__": main()