import numpy as np import onnx import torch def convert_onnx(net, path_module, output, opset=11, simplify=False): assert isinstance(net, torch.nn.Module) img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.int32) img = img.astype(np.float) img = (img / 255.0 - 0.5) / 0.5 # torch style norm img = img.transpose((2, 0, 1)) img = torch.from_numpy(img).unsqueeze(0).float() weight = torch.load(path_module) net.load_state_dict(weight, strict=True) net.eval() torch.onnx.export( net, img, output, input_names=["data"], keep_initializers_as_inputs=False, verbose=False, opset_version=opset ) model = onnx.load(output) graph = model.graph graph.input[0].type.tensor_type.shape.dim[0].dim_param = "None" if simplify: from onnxsim import simplify model, check = simplify(model) assert check, "Simplified ONNX model could not be validated" onnx.save(model, output) if __name__ == "__main__": import os import argparse from backbones import get_model parser = argparse.ArgumentParser(description="ArcFace PyTorch to onnx") parser.add_argument("input", type=str, help="input backbone.pth file or path") parser.add_argument("--output", type=str, default=None, help="output onnx path") parser.add_argument("--network", type=str, default=None, help="backbone network") parser.add_argument("--simplify", type=bool, default=False, help="onnx simplify") args = parser.parse_args() input_file = args.input if os.path.isdir(input_file): input_file = os.path.join(input_file, "model.pt") assert os.path.exists(input_file) # model_name = os.path.basename(os.path.dirname(input_file)).lower() # params = model_name.split("_") # if len(params) >= 3 and params[1] in ('arcface', 'cosface'): # if args.network is None: # args.network = params[2] assert args.network is not None print(args) backbone_onnx = get_model(args.network, dropout=0.0, fp16=False, num_features=512) if args.output is None: args.output = os.path.join(os.path.dirname(args.input), "model.onnx") convert_onnx(backbone_onnx, input_file, args.output, simplify=args.simplify)