## Eval on ICCV2021-MFR coming soon. ## Eval IJBC You can eval ijbc with pytorch or onnx. 1. Eval IJBC With Onnx ```shell CUDA_VISIBLE_DEVICES=0 python onnx_ijbc.py --model-root ms1mv3_arcface_r50 --image-path IJB_release/IJBC --result-dir ms1mv3_arcface_r50 ``` 2. Eval IJBC With Pytorch ```shell CUDA_VISIBLE_DEVICES=0,1 python eval_ijbc.py \ --model-prefix ms1mv3_arcface_r50/backbone.pth \ --image-path IJB_release/IJBC \ --result-dir ms1mv3_arcface_r50 \ --batch-size 128 \ --job ms1mv3_arcface_r50 \ --target IJBC \ --network iresnet50 ``` ## Inference ```shell python inference.py --weight ms1mv3_arcface_r50/backbone.pth --network r50 ``` ## Result | Datasets | Backbone | **MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | |:---------------|:--------------------|:------------|:------------|:------------| | WF12M-PFC-0.05 | r100 | 94.05 | 97.51 | 95.75 | | WF12M-PFC-0.1 | r100 | 94.49 | 97.56 | 95.92 | | WF12M-PFC-0.2 | r100 | 94.75 | 97.60 | 95.90 | | WF12M-PFC-0.3 | r100 | 94.71 | 97.64 | 96.01 | | WF12M | r100 | 94.69 | 97.59 | 95.97 |