# coding: utf-8 import os import pickle import matplotlib import pandas as pd matplotlib.use("Agg") import matplotlib.pyplot as plt import timeit import sklearn import argparse import cv2 import numpy as np import torch from skimage import transform as trans from backbones import get_model from sklearn.metrics import roc_curve, auc from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap from prettytable import PrettyTable from pathlib import Path import sys import warnings sys.path.insert(0, "../") warnings.filterwarnings("ignore") parser = argparse.ArgumentParser(description="do ijb test") # general parser.add_argument("--model-prefix", default="", help="path to load model.") parser.add_argument("--image-path", default="", type=str, help="") parser.add_argument("--result-dir", default=".", type=str, help="") parser.add_argument("--batch-size", default=128, type=int, help="") parser.add_argument("--network", default="iresnet50", type=str, help="") parser.add_argument("--job", default="insightface", type=str, help="job name") parser.add_argument("--target", default="IJBC", type=str, help="target, set to IJBC or IJBB") args = parser.parse_args() target = args.target model_path = args.model_prefix image_path = args.image_path result_dir = args.result_dir gpu_id = None use_norm_score = True # if Ture, TestMode(N1) use_detector_score = True # if Ture, TestMode(D1) use_flip_test = True # if Ture, TestMode(F1) job = args.job batch_size = args.batch_size class Embedding(object): def __init__(self, prefix, data_shape, batch_size=1): image_size = (112, 112) self.image_size = image_size weight = torch.load(prefix) resnet = get_model(args.network, dropout=0, fp16=False).cuda() resnet.load_state_dict(weight) model = torch.nn.DataParallel(resnet) self.model = model self.model.eval() src = np.array( [[30.2946, 51.6963], [65.5318, 51.5014], [48.0252, 71.7366], [33.5493, 92.3655], [62.7299, 92.2041]], dtype=np.float32, ) src[:, 0] += 8.0 self.src = src self.batch_size = batch_size self.data_shape = data_shape def get(self, rimg, landmark): assert landmark.shape[0] == 68 or landmark.shape[0] == 5 assert landmark.shape[1] == 2 if landmark.shape[0] == 68: landmark5 = np.zeros((5, 2), dtype=np.float32) landmark5[0] = (landmark[36] + landmark[39]) / 2 landmark5[1] = (landmark[42] + landmark[45]) / 2 landmark5[2] = landmark[30] landmark5[3] = landmark[48] landmark5[4] = landmark[54] else: landmark5 = landmark tform = trans.SimilarityTransform() tform.estimate(landmark5, self.src) M = tform.params[0:2, :] img = cv2.warpAffine(rimg, M, (self.image_size[1], self.image_size[0]), borderValue=0.0) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_flip = np.fliplr(img) img = np.transpose(img, (2, 0, 1)) # 3*112*112, RGB img_flip = np.transpose(img_flip, (2, 0, 1)) input_blob = np.zeros((2, 3, self.image_size[1], self.image_size[0]), dtype=np.uint8) input_blob[0] = img input_blob[1] = img_flip return input_blob @torch.no_grad() def forward_db(self, batch_data): imgs = torch.Tensor(batch_data).cuda() imgs.div_(255).sub_(0.5).div_(0.5) feat = self.model(imgs) feat = feat.reshape([self.batch_size, 2 * feat.shape[1]]) return feat.cpu().numpy() # 将一个list尽量均分成n份,限制len(list)==n,份数大于原list内元素个数则分配空list[] def divideIntoNstrand(listTemp, n): twoList = [[] for i in range(n)] for i, e in enumerate(listTemp): twoList[i % n].append(e) return twoList def read_template_media_list(path): # ijb_meta = np.loadtxt(path, dtype=str) ijb_meta = pd.read_csv(path, sep=" ", header=None).values templates = ijb_meta[:, 1].astype(np.int) medias = ijb_meta[:, 2].astype(np.int) return templates, medias # In[ ]: def read_template_pair_list(path): # pairs = np.loadtxt(path, dtype=str) pairs = pd.read_csv(path, sep=" ", header=None).values # print(pairs.shape) # print(pairs[:, 0].astype(np.int)) t1 = pairs[:, 0].astype(np.int) t2 = pairs[:, 1].astype(np.int) label = pairs[:, 2].astype(np.int) return t1, t2, label # In[ ]: def read_image_feature(path): with open(path, "rb") as fid: img_feats = pickle.load(fid) return img_feats # In[ ]: def get_image_feature(img_path, files_list, model_path, epoch, gpu_id): batch_size = args.batch_size data_shape = (3, 112, 112) files = files_list print("files:", len(files)) rare_size = len(files) % batch_size faceness_scores = [] batch = 0 img_feats = np.empty((len(files), 1024), dtype=np.float32) batch_data = np.empty((2 * batch_size, 3, 112, 112)) embedding = Embedding(model_path, data_shape, batch_size) for img_index, each_line in enumerate(files[: len(files) - rare_size]): name_lmk_score = each_line.strip().split(" ") img_name = os.path.join(img_path, name_lmk_score[0]) img = cv2.imread(img_name) lmk = np.array([float(x) for x in name_lmk_score[1:-1]], dtype=np.float32) lmk = lmk.reshape((5, 2)) input_blob = embedding.get(img, lmk) batch_data[2 * (img_index - batch * batch_size)][:] = input_blob[0] batch_data[2 * (img_index - batch * batch_size) + 1][:] = input_blob[1] if (img_index + 1) % batch_size == 0: print("batch", batch) img_feats[batch * batch_size : batch * batch_size + batch_size][:] = embedding.forward_db(batch_data) batch += 1 faceness_scores.append(name_lmk_score[-1]) batch_data = np.empty((2 * rare_size, 3, 112, 112)) embedding = Embedding(model_path, data_shape, rare_size) for img_index, each_line in enumerate(files[len(files) - rare_size :]): name_lmk_score = each_line.strip().split(" ") img_name = os.path.join(img_path, name_lmk_score[0]) img = cv2.imread(img_name) lmk = np.array([float(x) for x in name_lmk_score[1:-1]], dtype=np.float32) lmk = lmk.reshape((5, 2)) input_blob = embedding.get(img, lmk) batch_data[2 * img_index][:] = input_blob[0] batch_data[2 * img_index + 1][:] = input_blob[1] if (img_index + 1) % rare_size == 0: print("batch", batch) img_feats[len(files) - rare_size :][:] = embedding.forward_db(batch_data) batch += 1 faceness_scores.append(name_lmk_score[-1]) faceness_scores = np.array(faceness_scores).astype(np.float32) # img_feats = np.ones( (len(files), 1024), dtype=np.float32) * 0.01 # faceness_scores = np.ones( (len(files), ), dtype=np.float32 ) return img_feats, faceness_scores # In[ ]: def image2template_feature(img_feats=None, templates=None, medias=None): # ========================================================== # 1. face image feature l2 normalization. img_feats:[number_image x feats_dim] # 2. compute media feature. # 3. compute template feature. # ========================================================== unique_templates = np.unique(templates) template_feats = np.zeros((len(unique_templates), img_feats.shape[1])) for count_template, uqt in enumerate(unique_templates): (ind_t,) = np.where(templates == uqt) face_norm_feats = img_feats[ind_t] face_medias = medias[ind_t] unique_medias, unique_media_counts = np.unique(face_medias, return_counts=True) media_norm_feats = [] for u, ct in zip(unique_medias, unique_media_counts): (ind_m,) = np.where(face_medias == u) if ct == 1: media_norm_feats += [face_norm_feats[ind_m]] else: # image features from the same video will be aggregated into one feature media_norm_feats += [np.mean(face_norm_feats[ind_m], axis=0, keepdims=True)] media_norm_feats = np.array(media_norm_feats) # media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True)) template_feats[count_template] = np.sum(media_norm_feats, axis=0) if count_template % 2000 == 0: print("Finish Calculating {} template features.".format(count_template)) # template_norm_feats = template_feats / np.sqrt(np.sum(template_feats ** 2, -1, keepdims=True)) template_norm_feats = sklearn.preprocessing.normalize(template_feats) # print(template_norm_feats.shape) return template_norm_feats, unique_templates # In[ ]: def verification(template_norm_feats=None, unique_templates=None, p1=None, p2=None): # ========================================================== # Compute set-to-set Similarity Score. # ========================================================== template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) for count_template, uqt in enumerate(unique_templates): template2id[uqt] = count_template score = np.zeros((len(p1),)) # save cosine distance between pairs total_pairs = np.array(range(len(p1))) batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation sublists = [total_pairs[i : i + batchsize] for i in range(0, len(p1), batchsize)] total_sublists = len(sublists) for c, s in enumerate(sublists): feat1 = template_norm_feats[template2id[p1[s]]] feat2 = template_norm_feats[template2id[p2[s]]] similarity_score = np.sum(feat1 * feat2, -1) score[s] = similarity_score.flatten() if c % 10 == 0: print("Finish {}/{} pairs.".format(c, total_sublists)) return score # In[ ]: def verification2(template_norm_feats=None, unique_templates=None, p1=None, p2=None): template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) for count_template, uqt in enumerate(unique_templates): template2id[uqt] = count_template score = np.zeros((len(p1),)) # save cosine distance between pairs total_pairs = np.array(range(len(p1))) batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation sublists = [total_pairs[i : i + batchsize] for i in range(0, len(p1), batchsize)] total_sublists = len(sublists) for c, s in enumerate(sublists): feat1 = template_norm_feats[template2id[p1[s]]] feat2 = template_norm_feats[template2id[p2[s]]] similarity_score = np.sum(feat1 * feat2, -1) score[s] = similarity_score.flatten() if c % 10 == 0: print("Finish {}/{} pairs.".format(c, total_sublists)) return score def read_score(path): with open(path, "rb") as fid: img_feats = pickle.load(fid) return img_feats # # Step1: Load Meta Data # In[ ]: assert target == "IJBC" or target == "IJBB" # ============================================================= # load image and template relationships for template feature embedding # tid --> template id, mid --> media id # format: # image_name tid mid # ============================================================= start = timeit.default_timer() templates, medias = read_template_media_list( os.path.join("%s/meta" % image_path, "%s_face_tid_mid.txt" % target.lower()) ) stop = timeit.default_timer() print("Time: %.2f s. " % (stop - start)) # In[ ]: # ============================================================= # load template pairs for template-to-template verification # tid : template id, label : 1/0 # format: # tid_1 tid_2 label # ============================================================= start = timeit.default_timer() p1, p2, label = read_template_pair_list( os.path.join("%s/meta" % image_path, "%s_template_pair_label.txt" % target.lower()) ) stop = timeit.default_timer() print("Time: %.2f s. " % (stop - start)) # # Step 2: Get Image Features # In[ ]: # ============================================================= # load image features # format: # img_feats: [image_num x feats_dim] (227630, 512) # ============================================================= start = timeit.default_timer() img_path = "%s/loose_crop" % image_path img_list_path = "%s/meta/%s_name_5pts_score.txt" % (image_path, target.lower()) img_list = open(img_list_path) files = img_list.readlines() # files_list = divideIntoNstrand(files, rank_size) files_list = files # img_feats # for i in range(rank_size): img_feats, faceness_scores = get_image_feature(img_path, files_list, model_path, 0, gpu_id) stop = timeit.default_timer() print("Time: %.2f s. " % (stop - start)) print("Feature Shape: ({} , {}) .".format(img_feats.shape[0], img_feats.shape[1])) # # Step3: Get Template Features # In[ ]: # ============================================================= # compute template features from image features. # ============================================================= start = timeit.default_timer() # ========================================================== # Norm feature before aggregation into template feature? # Feature norm from embedding network and faceness score are able to decrease weights for noise samples (not face). # ========================================================== # 1. FaceScore (Feature Norm) # 2. FaceScore (Detector) if use_flip_test: # concat --- F1 # img_input_feats = img_feats # add --- F2 img_input_feats = img_feats[:, 0 : img_feats.shape[1] // 2] + img_feats[:, img_feats.shape[1] // 2 :] else: img_input_feats = img_feats[:, 0 : img_feats.shape[1] // 2] if use_norm_score: img_input_feats = img_input_feats else: # normalise features to remove norm information img_input_feats = img_input_feats / np.sqrt(np.sum(img_input_feats**2, -1, keepdims=True)) if use_detector_score: print(img_input_feats.shape, faceness_scores.shape) img_input_feats = img_input_feats * faceness_scores[:, np.newaxis] else: img_input_feats = img_input_feats template_norm_feats, unique_templates = image2template_feature(img_input_feats, templates, medias) stop = timeit.default_timer() print("Time: %.2f s. " % (stop - start)) # # Step 4: Get Template Similarity Scores # In[ ]: # ============================================================= # compute verification scores between template pairs. # ============================================================= start = timeit.default_timer() score = verification(template_norm_feats, unique_templates, p1, p2) stop = timeit.default_timer() print("Time: %.2f s. " % (stop - start)) # In[ ]: save_path = os.path.join(result_dir, args.job) # save_path = result_dir + '/%s_result' % target if not os.path.exists(save_path): os.makedirs(save_path) score_save_file = os.path.join(save_path, "%s.npy" % target.lower()) np.save(score_save_file, score) # # Step 5: Get ROC Curves and TPR@FPR Table # In[ ]: files = [score_save_file] methods = [] scores = [] for file in files: methods.append(Path(file).stem) scores.append(np.load(file)) methods = np.array(methods) scores = dict(zip(methods, scores)) colours = dict(zip(methods, sample_colours_from_colourmap(methods.shape[0], "Set2"))) x_labels = [10**-6, 10**-5, 10**-4, 10**-3, 10**-2, 10**-1] tpr_fpr_table = PrettyTable(["Methods"] + [str(x) for x in x_labels]) fig = plt.figure() for method in methods: fpr, tpr, _ = roc_curve(label, scores[method]) roc_auc = auc(fpr, tpr) fpr = np.flipud(fpr) tpr = np.flipud(tpr) # select largest tpr at same fpr plt.plot( fpr, tpr, color=colours[method], lw=1, label=("[%s (AUC = %0.4f %%)]" % (method.split("-")[-1], roc_auc * 100)) ) tpr_fpr_row = [] tpr_fpr_row.append("%s-%s" % (method, target)) for fpr_iter in np.arange(len(x_labels)): _, min_index = min(list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) tpr_fpr_row.append("%.2f" % (tpr[min_index] * 100)) tpr_fpr_table.add_row(tpr_fpr_row) plt.xlim([10**-6, 0.1]) plt.ylim([0.3, 1.0]) plt.grid(linestyle="--", linewidth=1) plt.xticks(x_labels) plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True)) plt.xscale("log") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC on IJB") plt.legend(loc="lower right") fig.savefig(os.path.join(save_path, "%s.pdf" % target.lower())) print(tpr_fpr_table)