Spaces:
Runtime error
Runtime error
import os | |
from pathlib import Path | |
import cv2 | |
import torch | |
from model import BiSeNet | |
from PIL import Image | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from tqdm import tqdm | |
# For BiSeNet and for official_224 SimSwap | |
class MaskDataset(Dataset): | |
def __init__(self, img_root, mask_root): | |
img_dir = Path(img_root) | |
self.to_tensor_normalize = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
self.img_files = list(img_dir.glob(f"**/*.jpg")) | |
self.img_files.sort() | |
self.mask_files = [os.path.join(mask_root, os.path.relpath(img_path, img_root)) for img_path in self.img_files] | |
def __len__(self): | |
return len(self.mask_files) | |
def __getitem__(self, index): | |
img = Image.open(self.img_files[index]).convert("RGB") | |
return {"img": self.to_tensor_normalize(img), "mask_path": self.mask_files[index]} | |
class MaskDataLoader: | |
def __init__(self): | |
"""Initialize this class""" | |
self.dataset = MaskDataset(img_root="/data/dataset/face_1k/alignHQ", mask_root="/data/dataset/face_1k/mask") | |
self.dataloader = torch.utils.data.DataLoader( | |
self.dataset, batch_size=8, shuffle=True, num_workers=8, drop_last=False | |
) | |
def __len__(self): | |
"""Return the number of data in the dataset""" | |
return len(self.dataset) / 8 | |
def __iter__(self): | |
"""Return a batch of data""" | |
for data in self.dataloader: | |
yield data | |
if __name__ == "__main__": | |
dataloader = MaskDataLoader() | |
bisenet_path = "/data/useful_ckpt/face_parsing/parsing_model_79999_iter.pth" | |
bisenet = BiSeNet(n_classes=19) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
bisenet.to(device) | |
state_dict = torch.load(bisenet_path, map_location=device) | |
bisenet.load_state_dict(state_dict) | |
bisenet.eval() | |
for data in tqdm(dataloader): | |
mask, ignore_ids = bisenet.get_mask(data["img"].to(device), 256) | |
mask = (mask * 255).to(torch.uint8).cpu().numpy().transpose(0, 2, 3, 1).repeat(3, 3) | |
for i in range(mask.shape[0]): | |
if ignore_ids[i]: | |
continue | |
path = data["mask_path"][i] | |
dirname = os.path.dirname(path) | |
os.makedirs(dirname, exist_ok=True) | |
cv2.imwrite(path, mask[i]) | |