Spaces:
Runtime error
Runtime error
import logging | |
import os | |
import time | |
from typing import List | |
import torch | |
from eval import verification | |
from torch import distributed | |
from torch.utils.tensorboard import SummaryWriter | |
from utils.utils_logging import AverageMeter | |
class CallBackVerification(object): | |
def __init__(self, val_targets, rec_prefix, summary_writer=None, image_size=(112, 112), wandb_logger=None): | |
self.rank: int = distributed.get_rank() | |
self.highest_acc: float = 0.0 | |
self.highest_acc_list: List[float] = [0.0] * len(val_targets) | |
self.ver_list: List[object] = [] | |
self.ver_name_list: List[str] = [] | |
if self.rank is 0: | |
self.init_dataset(val_targets=val_targets, data_dir=rec_prefix, image_size=image_size) | |
self.summary_writer = summary_writer | |
self.wandb_logger = wandb_logger | |
def ver_test(self, backbone: torch.nn.Module, global_step: int): | |
results = [] | |
for i in range(len(self.ver_list)): | |
acc1, std1, acc2, std2, xnorm, embeddings_list = verification.test(self.ver_list[i], backbone, 10, 10) | |
logging.info("[%s][%d]XNorm: %f" % (self.ver_name_list[i], global_step, xnorm)) | |
logging.info("[%s][%d]Accuracy-Flip: %1.5f+-%1.5f" % (self.ver_name_list[i], global_step, acc2, std2)) | |
self.summary_writer: SummaryWriter | |
self.summary_writer.add_scalar( | |
tag=self.ver_name_list[i], | |
scalar_value=acc2, | |
global_step=global_step, | |
) | |
if self.wandb_logger: | |
import wandb | |
self.wandb_logger.log( | |
{ | |
f"Acc/val-Acc1 {self.ver_name_list[i]}": acc1, | |
f"Acc/val-Acc2 {self.ver_name_list[i]}": acc2, | |
# f'Acc/val-std1 {self.ver_name_list[i]}': std1, | |
# f'Acc/val-std2 {self.ver_name_list[i]}': acc2, | |
} | |
) | |
if acc2 > self.highest_acc_list[i]: | |
self.highest_acc_list[i] = acc2 | |
logging.info( | |
"[%s][%d]Accuracy-Highest: %1.5f" % (self.ver_name_list[i], global_step, self.highest_acc_list[i]) | |
) | |
results.append(acc2) | |
def init_dataset(self, val_targets, data_dir, image_size): | |
for name in val_targets: | |
path = os.path.join(data_dir, name + ".bin") | |
if os.path.exists(path): | |
data_set = verification.load_bin(path, image_size) | |
self.ver_list.append(data_set) | |
self.ver_name_list.append(name) | |
def __call__(self, num_update, backbone: torch.nn.Module): | |
if self.rank is 0 and num_update > 0: | |
backbone.eval() | |
self.ver_test(backbone, num_update) | |
backbone.train() | |
class CallBackLogging(object): | |
def __init__(self, frequent, total_step, batch_size, start_step=0, writer=None): | |
self.frequent: int = frequent | |
self.rank: int = distributed.get_rank() | |
self.world_size: int = distributed.get_world_size() | |
self.time_start = time.time() | |
self.total_step: int = total_step | |
self.start_step: int = start_step | |
self.batch_size: int = batch_size | |
self.writer = writer | |
self.init = False | |
self.tic = 0 | |
def __call__( | |
self, | |
global_step: int, | |
loss: AverageMeter, | |
epoch: int, | |
fp16: bool, | |
learning_rate: float, | |
grad_scaler: torch.cuda.amp.GradScaler, | |
): | |
if self.rank == 0 and global_step > 0 and global_step % self.frequent == 0: | |
if self.init: | |
try: | |
speed: float = self.frequent * self.batch_size / (time.time() - self.tic) | |
speed_total = speed * self.world_size | |
except ZeroDivisionError: | |
speed_total = float("inf") | |
# time_now = (time.time() - self.time_start) / 3600 | |
# time_total = time_now / ((global_step + 1) / self.total_step) | |
# time_for_end = time_total - time_now | |
time_now = time.time() | |
time_sec = int(time_now - self.time_start) | |
time_sec_avg = time_sec / (global_step - self.start_step + 1) | |
eta_sec = time_sec_avg * (self.total_step - global_step - 1) | |
time_for_end = eta_sec / 3600 | |
if self.writer is not None: | |
self.writer.add_scalar("time_for_end", time_for_end, global_step) | |
self.writer.add_scalar("learning_rate", learning_rate, global_step) | |
self.writer.add_scalar("loss", loss.avg, global_step) | |
if fp16: | |
msg = ( | |
"Speed %.2f samples/sec Loss %.4f LearningRate %.6f Epoch: %d Global Step: %d " | |
"Fp16 Grad Scale: %2.f Required: %1.f hours" | |
% ( | |
speed_total, | |
loss.avg, | |
learning_rate, | |
epoch, | |
global_step, | |
grad_scaler.get_scale(), | |
time_for_end, | |
) | |
) | |
else: | |
msg = ( | |
"Speed %.2f samples/sec Loss %.4f LearningRate %.6f Epoch: %d Global Step: %d " | |
"Required: %1.f hours" | |
% (speed_total, loss.avg, learning_rate, epoch, global_step, time_for_end) | |
) | |
logging.info(msg) | |
loss.reset() | |
self.tic = time.time() | |
else: | |
self.init = True | |
self.tic = time.time() | |