xuehongyang
docker
54a5078
raw
history blame
5.17 kB
import argparse
import gradio as gr
from benchmark.app_image import ImageSwap
from benchmark.app_video import VideoSwap
from configs.train_config import TrainConfig
from models.model import HifiFace
class ConfigPath:
face_detector_weights = "/checkpoints/face_detector/face_detector_scrfd_10g_bnkps.onnx"
model_path = ""
model_idx = 80000
ffmpeg_device = "cuda"
device = "cuda"
def main():
cfg = ConfigPath()
parser = argparse.ArgumentParser(
prog="benchmark", description="What the program does", epilog="Text at the bottom of help"
)
parser.add_argument("-m", "--model_path", default="/checkpoints/hififace_pretrained/standard_model")
parser.add_argument("-i", "--model_idx", default="320000")
parser.add_argument("-f", "--ffmpeg_device", default="cpu")
parser.add_argument("-d", "--device", default="cpu")
args = parser.parse_args()
cfg.model_path = args.model_path
cfg.model_idx = int(args.model_idx)
cfg.ffmpeg_device = args.ffmpeg_device
cfg.device = args.device
opt = TrainConfig()
checkpoint = (cfg.model_path, cfg.model_idx)
model_path_1 = "/checkpoints/hififace_pretrained/with_gaze_and_mouth"
checkpoint1 = ("/checkpoints/hififace_pretrained/with_gaze_and_mouth", "190000")
model = HifiFace(opt.identity_extractor_config, is_training=False, device=cfg.device, load_checkpoint=checkpoint)
model1 = HifiFace(opt.identity_extractor_config, is_training=False, device=cfg.device, load_checkpoint=checkpoint1)
image_infer = ImageSwap(cfg, model)
image_infer1 = ImageSwap(cfg, model1)
def inference_image(source_face, target_face, shape_rate, id_rate, iterations):
return image_infer.inference(source_face, target_face, shape_rate, id_rate, int(iterations))
def inference_image1(source_face, target_face, shape_rate, id_rate, iterations):
return image_infer1.inference(source_face, target_face, shape_rate, id_rate, int(iterations))
model_name = cfg.model_path.split("/")[-1] + ":" + f"{cfg.model_idx}"
model_name1 = model_path_1.split("/")[-1] + ":" + "190000"
with gr.Blocks(title="FaceSwap") as demo:
gr.Markdown(
f"""
### standard model: {model_name} \n
### model with eye and mouth hm loss: {model_name1}
"""
)
with gr.Tab("Image swap with standard model"):
with gr.Row():
source_image = gr.Image(shape=None, label="source image")
target_image = gr.Image(shape=None, label="target image")
with gr.Row():
with gr.Column():
structure_sim = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="3d similarity",
)
id_sim = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="id similarity",
)
iters = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
label="iters",
)
image_btn = gr.Button("image swap")
output_image = gr.Image(shape=None, label="Result")
image_btn.click(
fn=inference_image,
inputs=[source_image, target_image, structure_sim, id_sim, iters],
outputs=output_image,
)
with gr.Tab("Image swap with eye&mouth hm loss model"):
with gr.Row():
source_image = gr.Image(shape=None, label="source image")
target_image = gr.Image(shape=None, label="target image")
with gr.Row():
with gr.Column():
structure_sim = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="3d similarity",
)
id_sim = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="id similarity",
)
iters = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
label="iters",
)
image_btn = gr.Button("image swap")
output_image = gr.Image(shape=None, label="Result")
image_btn.click(
fn=inference_image1,
inputs=[source_image, target_image, structure_sim, id_sim, iters],
outputs=output_image,
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
main()